GEORGE MASON UNIVERSITY COLLEGE OF EDUCATION AND HUMAN DEVELOPMENT Secondary and Elementary Education Program (SEED)

EDCI 573-001: Teaching Science in the Secondary School 3 credits, Spring 2019
Tuesdays, 4:30 – 7:10 pm, Thompson 2020 – Fairfax

Instructor: Erin Peters-Burton, PhD Email: epeters1@gmu.edu
Office Hours: Thompson 1401 by appointment Phone: 703-993-9695

Prerequisites/Corequisites

Students must also complete 15 hours of field experience. It is recommended that students take Methods I in the same semester as they enroll in EDUC 672, Human Development.

University Catalog Course Description

Provides study of methods, materials, content, and organization of science programs. Emphasizes curriculum planning, current methodologies, safety, and trends in secondary schools.

Course Overview

EDCI 573 is the first course in a two-part sequence of science methods courses for pre-service and provisionally licensed science teachers seeking a secondary school teaching license in earth science, biology, chemistry, or physics. The course builds upon students' knowledge of their subject matter and previous education coursework to construct fundamental knowledge of science teaching and learning including standards-based curriculum design and research-based teaching strategies. The course focuses on developing inquiry-based lessons for students to investigate science and assessing student understanding of science and the nature of science. The teachers will plan lessons for students to learn science, implement lessons in a high school classroom, observe students learning, and evaluate their teaching and student outcomes.

Per state guidelines, you are required to complete 15 hours of fieldwork during this class. Please answer the survey set by Dr. Zenkov. If you have missed this survey, go to http://cehd.gmu.edu/endorse/ferf to sign up for your placement.

Course Delivery Method

EDCI 573 is designated as a lecture course; however, students are expected to come to class prepared and actively participate in discussions and other hands-on learning experiences.

Learner Outcomes/Objectives

Below is a list of the major course goals along with their corresponding objectives and assessments.

Goal 1: Build a learning theory and see the value in using it for developing and implementing lessons.

Objective	Assignment	
Students will be able to explain why a student-centered approach to	Research review	
learning is effective		
Students will be able to design lessons that clearly reflect their	Lesson plans	
learning theory		

Goal 2: Do science to understand how science is done.

Objective	Assignment
Students will be able to design lessons in which students are actively	Lesson plans
engaged in hands-on science activities	
Students will be able to explain the epistemic features and unique	Nature of science
characteristics of science (NOS)	assignment

Goal 3: Recognize that inquiry learning using scientific practices has inherent risks that should be identified and addressed such that students learn to do science in an ethical and safe manner.

Objective	Assignment
Students will be able to describe the major safety and ethical concerns	Safety assignment
associated with conducting science in the classroom	
Students will be able to describe means to reduce the potential safety	Safety assignment
risks involved in conducting scientific investigations in the classroom	
while not compromising the benefit to students of conducting inquires	
Students will be able to design lessons that clearly indicate safety	Lesson plans
concerns, ways to reduce them, and what to do when accidents	
happen	

Goal 4: Develop an understanding of how inquiry can develop both scientific thinking and content knowledge.

Objective	Assignment
Students will be able to develop inquiry-based lessons that	Lesson plans
incorporate scientific practices and advance students' content	
knowledge	

Goal 5: Understand how to develop effective lessons and units with backwards design.

Objective	Assignment	
Students will be able to use the basic organization of backwards	Lesson plans	
design to develop a lesson plan		
Students will be able to write measureable objectives	Lesson plans	
Students will be able to design teaching activities that support student	Lesson plans,	
achievement of measureable objectives	microteaching	
Students will be able to design assessments that evaluate student	Lesson plans,	
achievement of measureable objectives	microteaching	

Goal 6: Develop skills as reflective practitioners.

Objective	Assignment
Students will be able to effectively examine classrooms using their	Field experience
learning theory as a lens and student behavior, engagement, and	paper
learning (when possible) as evidence	
Students will be able to examine and use assessment data to reflect	Microteaching
upon and improve their lessons	

Professional Standards

The course focuses on the teaching of science as called for by the state and national science standards and as outlined by the National Council for Accreditation of Teacher Education (NCATE), the National Science Teachers Association (NSTA), and the Interstate New Teacher Assessment and Support Consortium (INTASC). EDCI 573 builds a repertoire of science teaching and assessment strategies to facilitate student learning.

The pre-service and provisionally licensed teacher will:

- Build a repertoire of science teaching and assessment strategies by reading, writing, observing, participating in, and reflecting on the teaching and learning of science; RESEARCH-BASED PRACTICE; SPA STANDARDS 1, 3, 5, 6, 8, 10
- Develop strategies to help students become scientifically literate, think critically and creatively, understand the nature of science, and see the importance of science as a way of knowing; ETHICAL LEADERSHIP; INNOVATION; SPA STANDARDS 2, 3, 4
- Plan standards-based (local, state, and national) units of science study including daily lesson plans for students that reflect research in effective science teaching and learning; RESEARCH-BASED PRACTICE; SPA STANDARD 5, 6, 8, 10
- Construct science lessons that include alignment of objectives, activities, and assessments that address the needs of a variety of student populations including English language learner, special needs students, and gifted and talented students; ETHICAL LEADERSHIP; SPA STANDARDS 8, 10
- Learn about science laboratory safety and plan teaching activities that highlight safety;
 ETHICAL LEADERSHIP; SPA STANDARD 9
- Work collaboratively with peers to teach and discuss science and science teaching.
 COLLABORATION; SPA STANDARD 10
- Incorporate environmental sustainability into teaching paradigms and into daily life.
 SOCIAL JUSTICE; SPA STANDARD 4

Required Electronic Texts

We will have required readings from an **NSTA class bundle**, consisting of various books and journals (and sometimes webinars) from the National Science Teacher Association (NSTA) – our national organizing body. The purchase of these electronic materials also gives you a membership to NSTA, which opens up a great deal of resources to you. We are doing this instead of having one book for two reasons:

- 1. NSTA is an important organization to know over the course of your career as a science teacher they are a premiere organization in professional development- and you should get to know them and get involved as soon as possible
- 2. NSTA peer-reviews all of their work, so their professional development materials are the best available and the biggest body of materials as well

We suggest you purchase the year-long course pack (\$99) if you plan to take Methods 2 next semester, as that course also uses the course pack. If you want to purchase the course pack for just this semester it is (\$79).

Below are instructions for your students to follow in purchasing the NSTA Learning Center (NSTA LC) subscription **AND** NSTA student membership class bundle.

IMPORTANT NOTE for STUDENTS:

Do not purchase Individual or Institutional NSTA Membership. These memberships are sold online for \$39, \$79, or \$99 and do not include the NSTA Learning Center subscription.

You must purchase the <u>class bundle</u> which includes the NSTA Learning Center subscription <u>AND</u> NSTA student membership available <u>ONLY</u> at the web address provided below.

Students: Follow the steps below in order:

Step 1: Create your NSTA LC account

Step 2: Purchase the NSTA LC subscription/NSTA student membership class bundle

(1) Create your NSTA LC account:

*Go to the Learning Center to create a free account:

http://learningcenter.nsta.org/my_learning_center/register.aspx

*If you already have a Learning Center account you do not need to create a second account for your class. Use your NSTA LC e-mail address and password to login to the portal.

(2) Purchase the NSTA LC subscription/NSTA student membership class bundle:

After logging-in, you need to purchase the NSTA LC subscription/NSTA student membership class bundle.

To purchase the class bundle for \$99 using a credit card, go to the following web address: http://learningcenter.nsta.org/preservice

Next steps?

Become familiar with the NSTA LC. Below is a list of things to try:

1. Visit your class landing page by clicking the "Class Hub" navigational button (you will see the Class Hub navigational button after purchasing the class bundle).

- 2. Edit your profile introduce yourself to the community; tell others about you.
- 3. Search for resources and add them to your library by clicking the "Explore All Resources" button.
- 4. Explore the "Forums & User Community." Join the conversation and make a post.
- 5. Watch the "How to Videos" and create a collection of resources to share with classmates.
- 6. Check the "Community Update" for latest news and resources in the Learning Center.

Note: A limit for the number of fee-based e-book chapters that each student may add to their library for free has been set at 15.

To get the readings for the class, search for the COLLECTION - GMU EDCI 473/573 Readings. I have set it as public, so you should all be able to have access to add this in one click. You may also find and save other items to your learning center account – most of the materials are free – including science objects and webinars.

Send your questions to: learningcenterhelp@nsta.org

This NSTA class bundle is separate from your Blackboard site, which is all of the assignments and other readings for the course.

Blackboard information

The online site for this course can be found at http://mymasonportal.gmu.edu. Students are expected to routinely check the online course portal for supplemental information, readings, and assignments.

Recommended Online Readings

- Achieve, (2013). Next Generation Science Standards (2013). Achieve, Inc. http://www.nextgenscience.org/next-generation-science-standards
- Commonwealth of Virginia (2010). *Standards of Learning for Virginia Public Schools*. Richmond, Virginia. http://www.doe.virginia.gov/testing/index.shtml
- Commonwealth of Virginia (2003). *Science Standards of Curriculum Framework Guides*. http://www.pen.k12.va.us/VDOE/Instruction/sol.html#science
- National Research Council (1996). National science education standards. Washington,
 DC: National Academy Press. http://www.nap.edu/openbook.php?record_id=4962
- American Association for the Advancement of Science (1993). *Benchmarks for Science Literacy*. http://www.project2061.org/publications/bsl/online/index.php
- McComas, W. F. (1998). The principle elements of the nature of science: Dispelling the myths. http://www.pestl.org/images/The Myths of Science Article by McComas.pdf
- Peters, E. E. (2006). Why is teaching the nature of science so important? http://www.auburn.edu/~cgs0013/Schnittka_timeline.pdf
- Dagher, Z. R. & Erduran, S. (2017). Abandoning patchwork approaches to nature of science in science education. Canadian Journal of Science, Mathematics, and Technology Education, 17(1), 46-52. http://dx.doi.org/10.1080/14926156.2016.1271923
- American Chemical Society (2007). Educators & Students page.
 http://www.chemistry.org/portal/a/c/s/1/educatorsandstudents.html
- American Chemical Society (2003). *Safety in Academic Chemistry Laboratories Accident Prevention for Faculty and Administrators*. (800 227-5558) Free single copies or online:

- https://www.acs.org/content/dam/acsorg/about/governance/committees/chemicalsafety/publications/safety-in-academic-chemistry-laboratories-students.pdf
- U.S. Government Printing Office (2007). Code of Federal Regulations.
 https://www.govinfo.gov/content/pkg/CFR-2007-title45-vol1/pdf/CFR-2007-title45-vol1.pdf
- U.S. Department of Labor (2007). Occupational Health and Safety Administration.
 https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=news_releases&p_id=14123
- American National Standards Institute (2007). *American National Standards Institute Homepage*. http://www.ansi.org/
- Maryland Public Schools (2007). Legal Aspects of Laboratory Safety. http://mdk12.org/instruction/curriculum/science/safety/legal.html

Other Recommended Readings

- Barnekow, D. J. (1998). *Graphic organizers for science*. Portland, ME: J. Weston Walsh.
- Bybee, R. W., Powell, J. C., & Trowbridge, L. W. (2008). *Teaching secondary school science: Strategies for developing scientific literacy*. Upper Saddle River, NJ: Pearson.
- Cothron, J. H., Giese, R. N., Rezba, R. J. (2005). *Students and research*. Dubuque, Iowa: Kendall/Hunt.
- Froschauer, L., & Bigelow, M. L. (2012). *Rise and shine: A practical guide for the beginning science teacher*. Arlington, VA: NSTA Press.
- Hassard, J. (2005). The art of teaching science: Inquiry and innovation in middle school and high school. New York: Oxford University Press.
- Haysom, J., & Bowen, M. (2010). *Predict, observe, explain: Activities enhancing scientific understanding*. Arlington, VA: NSTA Press.
- Johnson, D. W. & Johnson R. T. (1999). *Learning together and alone: Cooperative, competitive, and individualistic learning.* Boston: Allyn and Bacon.
- Kagan, S. (1994). Cooperative learning. San Clemente, CA: Resources for Teachers, Inc.
- Keely, P. (2008). Science formative assessment: 75 practical strategies for linking assessment, instruction, and learning. Arlington, VA: National Science Teacher Association Press.
- National Research Council. (2005). *How students learn: Science in the classroom.* Washington, DC: The National Academies Press.
- O'Brien, T. (2010). *Brain-powered science: Teaching and learning with discrepant events*. Arlington, VA: NSTA Press.
- Pinto, L. E. (2013). From discipline to culturally responsive engagement: 45 classroom management strategies. Thousand Oaks, CA: Corwin Press.
- Ritchhart, R., Church, M. & Morrison, K. (2011). *Making thinking visible: How to promote engagement, understanding, and independence for all learners*. San Francisco: Jossey-Bass.
- Slavin, R. E. (1995). *Cooperative learning*. Boston: Allyn and Bacon.
- Wiggins, G. & McTighe, J. (1998). *Understanding by design.* Alexandria, VA: Association for Supervision and Curriculum Development.
- Wong, H. K., & Wong. R. T. (2009). *The first days of school: How to be an effective teacher* (4th ed.). Mountain View, CA: Wong Publications.

Course Performance Evaluation
Students are expected to submit all assignments on time in the manner outlined by the
instructor (e.g., Blackboard, Tk20, hard copy).

Assignments

Findings from science education research shows that frequent assessment of small amounts of material is most effective for learning science. Therefore, in this class formal and informal assessment will be continuously provided on assignments and class activities. Assessment is a two-way communication loop that informs both learning and teaching. All written assignments must be submitted through Blackboard or Tk20 as indicated. General formatting includes 1" margins, double-spacing, and Times New Roman (or equivalent) font.

Assignment	Points	Due Date
Research Review	10	February 15
Nature of Science Assignment (PBA)	10	February 19
Lesson Critique and Revision	20	March 19
Safety Assignment (PBA)	10	April 23
Original Lesson (Draft Due April 9)	20	May 7
Microteaching and Reflection	20	May 7
Field Experience Paper	10	May 7
Professionalism	10	All Classes
TOTAL	110	

ALL ASSIGNMENT INSTRUCTIONS ARE POSTED ON BLACKBOARD – THE INSTRUCTIONS GIVEN ON THE SYLLABUS ARE FOR DESCRIPTIVE PURPOSES ONLY

Nature of Science Assignment (PBA):

During the early part of the semester, you will be involved in doing scientific investigations. For this assignment, you will provide a written reflection (1) highlighting how your experiences have assisted you in addressing the core science ideas listed below, (2) describing how you used the science practices listed below, and (3) explaining how you might apply scientific inquiry in your classroom in order to teach a science concept. This assignment must be submitted via Tk20. The rubric can be found at the end of the syllabus.

Nature of Science Ideas

- 1. Science cannot answer all questions.
- 2. Science employs multiple methods and types of reasoning that share many common factors, habits of mind, and norms.
- 3. Science produces, demands, and relies on empirical evidence.
- 4. Scientific knowledge is tentative, durable, and self-correcting.
- 5. Laws and theories are related but distinct kinds of scientific knowledge and play central roles.
- 6. Science is a creative endeavor.
- 7. Social, historical, and cultural factors play a role in the construction of scientific knowledge.
- 8. Science and technology are not the same but impact one another.
- 9. Science has a subjective element.

Science and Engineering Practices

- 1. Asking questions/defining problems
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Constructing explanations/designing solutions
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, & communicating information

Research Review:

For this assignment, identify three peer-reviewed research articles related to student-centered and inquiry-based science teaching. Relevant articles can be found via Google Scholar (http://scholar.google.com) and/or the Mason library search engine (http://library.gmu.edu). You will then write a review of the articles, including (1) a description of the research questions, participants, methodology, and measures, (2) a synopsis of the findings, and (3) a discussion of how the findings can/should influence your classroom practice. Be sure to provide APA citations for each article. Submit the assignment via Blackboard.

Lesson Critique and Revision:

Many of your best lessons will come from colleagues, websites, or other resources. However, it is critical that you customize these activities to your own style, purpose, students, and – most importantly – teaching philosophy. For this assignment, you will find a lesson plan from your licensure area, critique it with the provided form, and then improve it to more closely align with best practices. Submit the original and revised lessons as well as the critique form via Blackboard.

Safety Assignment (PBA):

A safety plan is necessary for the health and safety of your students and yourself, as well as for legal reasons. For this assignment, you will design a science safety plan, which will include (1) a list of safety rules/procedures relevant to your subject area, (2) a one-page (front and back, if necessary) safety contract that must be signed and dated by parents and students, (3) an evaluation of a science lesson for safety issues, (4) an engaging, safety-related assignment that teaches students the importance of safety, and (5) active maintenance of safety equipment in the classroom. This assignment must be submitted via Tk20. The rubric can be found at the end of the syllabus.

Original Lesson:

It is important that teacher candidates demonstrate their ability to design an effective lesson plan with specific, performance-based learning objectives that meet the learning needs of their students. Lesson planning can be guided by four basic questions: (adapted from Spencer, 2003, p. 251).

- 1. Who am I teaching? The number of learners, their academic level and prior knowledge.
- 2. What am I teaching? The content or subject, the type of learning (knowledge, skills, behaviors).
- 3. How will I teach it? Teaching models, learning strategies, length of time available, EDCI 573 –Peters-Burton page 9

- materials, technology resources, differentiation/modifications, etc.
- 4. How will I know if the students understand? Informal and formal assessments, formative and summative, higher order questioning techniques, feedback from learners, etc.

You might also want to ask:

- What do students know already?
- Where have students come from and what are they going on to next?
- How can I build in sufficient flexibility cope with emergent needs?

A lesson plan must be developed for each teaching session. During the internship and when teaching new content or grade levels, your lesson plans will be detailed. As you gain pedagogical content knowledge and are proficient, your lesson planning becomes less detailed. Part of the planning process includes considering the following tasks:

- list content and key concepts, (research more if needed)
- define your aims and identify specific learning outcomes or objectives
- create assessments that are aligned to your specific objectives
- think about the structure of the lesson, pacing, and transitions
- identify adaptations/modifications/extensions needed to meet student needs
- determine "best practice" and learning strategies aligned to the learning outcomes
- identify learning resources and support materials

For this assignment, you will write an original lesson that aligns with best practices. The lesson should be designed for 90 minutes of instruction and use the provided lesson plan template. Submit all files via Tk20. The rubric can be found at the end of the syllabus.

Microteaching and Reflection:

Research shows that the most effective teachers inform their practice by analyzing and reflecting on their teaching. Toward the end of the semester, you will teach a 30-minute lesson that you have designed with your partner(s). After teaching, you will submit a reflection about the experience via Blackboard.

Prior to the day of the lesson:

1. Identify any resources you need to teach your lesson and put in a request for what you cannot obtain to determine if it is available. Please do this at least two (2) weeks prior to the day you teach to ensure materials will be available.

Day of the lesson:

- 2. Give a one-minute overview in which you will describe to the class the setting of this lesson (subject, grade level, standards, and objectives).
- 3. For the remainder of the time, you will engage your classmates in an **inquiry lesson** that teaches both specific science concepts and nature of science ideas.
- 4. Be sure to conduct a **formative assessment** so you have data to determine whether or not students achieve the objectives.

After the lesson:

- 5. Examine the formative assessments, summarizing the results and determining from this data whether the objectives were achieved.
- 6. Write a 5-page paper that examines what happened during your lesson, focusing on how the activities might have influenced student learning (positively and negatively). The paper should be organized as follows:
 - a. Identify the assessments used during lesson to evaluate the lesson objectives. Describe the results of the assessments of these objectives (e.g., percentage of the students achieved each objective).
 - b. Examine the lesson in detail to determine what happened in the classroom that might have influenced the results of the assessments and what could be done to improve student achievement. Where/how could students think more deeply about the objective? Where/how could they be more explicit (either as a class or individually) about what they had learned before the assessment? Further, you should conduct a critical review of the assessment as to whether it is a valid measure of the lesson objectives. Use evidence from assessments to draw your conclusions about your lesson.
 - c. Examine the specific actions you undertook as a teacher (mannerisms, answering questions, etc.) and categorize these into those actions that might help with student learning and those that might hinder student learning. In each category, explain how it might influence student learning.

Field Experience Project:

The purpose of the field experience is to provide you with the opportunity to (1) connect the goals of the course, science education theories, and research findings to classroom/school practice, (2) be exposed to a variety of classroom/school communities, and (3) promote critical, self-reflection about your future teaching practice.

In this course you will spend 15 hours in area classroom(s) with teachers instructing subject(s) and grade level(s) for which you are being licensed. Many of these hours will be spent observing these teachers' instruction, but you will also be expected to engage with students individually, in small groups, and in whole groups, as your mentor teacher determines. As part of this experience, you will be reflecting on how teachers design instruction to meet the needs of students and you will consider suggestions as to how you might do things similarly and/or differently.

You should spend a *minimum* of 5 days observing teachers, with each day being a *maximum* of 3 hours. The purpose of the field experience is to provide you with the opportunity to (1) connect the goals of your methods I class, education theories relevant to your subject matter, and concepts and research findings related to classroom/school practice, (2) study and begin to develop your pedagogical practices in a variety of classroom/school communities, and (3) promote critical, self-reflection about your current and future teaching practices.

Your **Clinical Experience Summary Project** should address all of the elements described on the **Clinical Experience Observation Protocol and Critical Incidents Reflection** Form:

- 1. your class's demographics
- 2. your classroom's layout and the teacher and student movements and interactions it enables or inhibits
- 3. your observations regarding your mentor teacher's and classroom's:
 - a. teaching processes and practices
 - b. student-teacher interactions
 - c. student-student interactions
 - d. teaching and learning with technology
 - e. interactions with students with special needs
 - f. interactions with diverse populations (e.g., ELLs or underrepresented racial/ethnic minority students)
- 4. critical teaching/learning incidents
- 5. burning issues/questions
- 6. "best practice" teaching tips

Consider your Protocol and Reflection Forms as well as any other relevant data you collected and prepare your Clinical Experience Summary and Analysis Project. This report will be submitted through Blackboard and consists of 4-5 page description and analysis of what you have learned. Be sure to reflect on the intersections and tensions between what you have encountered in our Methods I class, our course readings and activities, your own school experiences in similar classes, and your clinical experience observations. Finally, detail implications of this clinical experience, what you observed, and your analyses for your future teaching practices.

Note: Be sure to provide the Methods I Clinical Experience Introductory Letter to your mentor teacher, and discuss expectation for hours, Observation Protocol elements, Reflection Form content, and this Summary and Analysis Project with your mentor teacher early in your clinical experience.

Professionalism:

Learning depends on the active engagement of the participant and frequent checking by the instructor as to the progress of the learner. Your classmates depend on your comments to extend their learning. Preparation, attendance, and participation are necessary for each class.

EDCI 573 –Peters-Burton – page 12

Other Requirements

Every student registered for any Secondary Education course with a required TK20 performance-based assessment (designated as such in the syllabus) must submit this/these assessment(s) (Nature of Science, Safety, and Original Lesson Plan assignments) to TK20 through 'Assessments' in Blackboard (regardless of whether a course is an elective, a one-time course or part of an undergraduate minor). Failure to submit the assessment(s) to TK20 (through Blackboard) will result in the course instructor reporting the course grade as Incomplete (IN). Unless this grade is changed upon completion of the required TK20 submission, the IN will convert to an F nine weeks into the following semester.

Grading

High quality work and participation is expected on all assignments and in class. Attendance at all classes for the entire class is a course expectation. For each unexcused absence, the course grade will be reduced by 5% points. All assignments are graded and are due at the beginning of class on the day they are due. Late assignments will automatically receive a ten percent grade reduction (one full letter grade lower).

A = 93-100% A- = 90-92% B+ = 88-89% B = 80-87% C = 70-79% F = Below 70%

If circumstances warrant, a written contract (there is a form that CEHD provides) for an incomplete must be provided to the instructor for approval prior to the course final examination date. Requests are accepted at the instructor's discretion, provided your reasons are justified and that 80% of your work has already been completed. Your written request should be regarded as a contract between you and the instructor and must specify the date for completion of work. This date must be at least two weeks prior to the university deadline for changing incompletes to letter grades.

Professional Dispositions

Students are expected to exhibit professional behaviors and dispositions at all times. See https://cehd.gmu.edu/students/polices-procedures/

Class Schedule

Faculty reserves the right to alter the schedule, as necessary, with notification to students.

Date	Topic(s)	Recommended Reading Due	Assignment Due
Jan 22	Intro to Course Why teach science? Social Justice	Look over the Blackboard Website	
Jan 29	Nature of science	 NSTA class bundle – Teaching and Assessing the Nature of Science (Clough) Using Metacognition to Develop Understanding of the Role of Evidence in Science (Peters-Burton) 	
Feb 5	Conceptual Modeling	 NSTA class bundle – Conceptualizing Moon Phases (Wilcox & Kruse) ES Models that Matter (Hitt & Townsend) CHEM Modeling Natural Selection (Bogiages & Lotter) BIO Reasoning from Models (Demir, Wade-Jaimes & Qureshi) PHY 	Research Review
Feb 12	Conceptual Modeling and Argumentation in Science	NSTA class bundle — ■ A Scaffolding Suite to Support Evidence-Based Modeling and Argumentation (Reinhart, Duncan, & Chinn) ■ Promoting and supporting scientific argumentation in the classroom—The evaluate- alternatives instructional model (Sampson & Grooms) ■ Inquiry, Argumentation, and the Phases of the Moon (Hall & Sampson)	
Feb 19	Lesson Plans, Lesson Objectives and Backwards Design	 NSTA class bundle – A Backward Approach to Inquiry (Hendrickson) Understanding by Design meets Integrated Science (Want & Allen) 	NOS Assignment

	Tau			
Feb 26	Clinical Experience	NSTA class bundle –		
	Orientation from	Formative Assessment Guideposts		
	4:30-5:00	(Ayala)		
	F	Formative Assessment Probes		
	Formative	(Keeley, Eberle, & Farrin)		
	Assessment	Using Graphic Organizers as		
		Formative Assessment (Strubel)		
		 Assessing Scientific Inquiry 		
N 4 = 11 C	Commention	(Peters)		
Mar 6	Summative	NSTA class bundle –		
	Assessment	The ABCs of Assessment (Wright)		
		Reaching the Zone of Optimal		
		Learning: The Alignment of		
		Curriculum, Instruction, and Assessment (Farenga,. Joyce, &		
		Ness)		
		Reforming Cookbook Labs (Peters)		
		Mar 11 – 17 Spring Break		
		ivial 11 – 17 Spring Break		
Mar 19	Managing the Inquiry	NSTA class bundle –	•	Lesson
11101 23	Classroom	 Maximizing Student Time on Task 		Critique and
		(Peters)		Revision
		Managing Group Work (McGlynn		
		& Kelly)		
Mar 26	Safety	NSTA class bundle –		
	,	 Safer Science: NSTA Portal to 		
		Science Safety (Roy)		
		 Lab Safety: More than Just Goggles 		
	Арі	ril 2 – No Class - Erin at NARST		
Apr 9	Peer Review of		•	Original
	Lesson			Lesson Draft
Apr 16	Microteaching			
Apr 23	Microteaching		•	Safety
			L	Assignment
Apr 30	Clinical Experience			
	Debrief (4:30-5:00)			
	Time to work on			
	assignment –			
	Erin at VSELA			
May 7	No CLASS –		•	Microteaching
	Remaining			Reflection
	assignments due		•	Clinical
	<u> </u>		L	Experience
			_	

			Paper
		•	Final Lesson
			Plan

Core Values Commitment

The College of Education and Human Development is committed to collaboration, ethical leadership, innovation, research-based practice, and social justice. Students are expected to adhere to these principles: http://cehd.gmu.edu/values/.

GMU Policies and Resources for Students

Policies

- Students must adhere to the guidelines of the Mason Honor Code (see https://catalog.gmu.edu/policies/honor-code-system/).
- Students must follow the university policy for Responsible Use of Computing (see http://universitypolicy.gmu.edu/policies/responsible-use-of-computing/).
- Students are responsible for the content of university communications sent to their Mason email account and are required to activate their account and check it regularly. All communication from the university, college, school, and program will be sent to students solely through their Mason email account.
- Students with disabilities who seek accommodations in a course must be registered with George Mason University Disability Services. Approved accommodations will begin at the time the written letter from Disability Services is received by the instructor (see https://ds.gmu.edu/).
- Students must silence all sound emitting devices during class unless otherwise authorized by the instructor.

Campus Resources

- Support for submission of assignments to Tk20 should be directed to tk20help@gmu.edu or https://cehd.gmu.edu/aero/tk20. Questions or concerns regarding use of Blackboard should be directed to http://coursessupport.gmu.edu/.
- For information on student support resources on campus, see
 https://ctfe.gmu.edu/teaching/student-support-resources-on-campus

For additional information on the College of Education and Human Development, please visit our website https://cehd.gmu.edu/students/.

Assignment Rubrics

Nature of Science Assignment (PBA)

Standard	Accomplished	Target	Acceptable	Unsatisfactory
Understand	Product provided is	Product provided is	Product provided is	Produce submitted
research and can	an independent	a classroom	a classroom	is not an example
successfully design,	investigation in	assignment in	assignment in	of scientific inquiry.
conduct, report,	which the	which the	which the	
and evaluate	candidate	candidate is given a	candidate was	
investigations in	identifies the	question but	given the question	
science (1d)	question, designs	designed and	and methods for	
	and implements	implemented the	investigating the	
	the methods for	methods for	question but	
	investigating the	investigating the	candidate conducts	
	questions, and	question as well as	the investigation	
	reports the	reports on the	and reports on the	
	findings.	findings.	findings.	
Understand and	The mathematics	The mathematics	The mathematics	There are no or
can successfully	used when	used when	used when	inappropriate
use mathematics	reporting findings	reporting findings	reporting findings	examples of
to process and	or solving the	or solving the	or solving the	mathematics used
report data and	problem are	problem are	problem were	to report findings
solve problems in	appropriate and	appropriate and	largely determined	or solve problems.
their field(s) of	independently	largely determined	by the instructor.	
licensure (1e)	determined by the	by the candidate.		
	candidate.			
Understand the	Candidate fully	Candidate fully	Candidate explains	Candidate cannot
philosophical	explains all of the	explains all of the	the following	explain the
tenets,	following aspects	following aspects	aspects of the	following aspects
assumptions, goals,	of the nature of	of NOS BUT DOES	nature of science	of the nature of
and values that	science AND	NOT connect them	in a partial or	science:
distinguish science	connects them to	to the	superficial way:	1. science cannot
from technology	the investigations:	investigations:	1. science cannot	answer all
and from other	1. science cannot	1. science cannot	answer all	questions
ways of knowing	answer all	answer all	questions	2. science
the world (2b)	questions	questions	2. science	produces,
	2. science	2. science	produces,	demands, and
	produces,	produces, demands, and	demands, and	relies on empirical evidence
	demands, and relies on empirical	relies on empirical	relies on empirical evidence	3. science and
	evidence	evidence	3. science and	
	3. science and	3. science and	technology are not	technology are not the same but
	technology are not	technology are not	the same but	impact one
	the same but	the same but	impact one	another.
	impact one	impact one	another.	another.
	another.	another.	another.	
Understand the	Candidate fully	Candidate fully	Candidate explains	Candidate cannot
processes, tenets,	explains the	explains the	the following	explain the
and assumptions of	following aspects	following aspects	aspects of the	following aspects
multiple methods	of the nature of	of NOS BUT DOES	nature of science	of the nature of
of inquiry leading	science AND	NOT connect them	in a partial or	science:
or inquiry leading	science AND	NOT connect them	in a partial or	science:

Standard	Accomplished	Target	Acceptable	Unsatisfactory
to scientific	connects them to	to the	superficial way:	1. Science employs
knowledge (3a)	the investigations:	investigations:	1. Science employs	multiple methods
	1. Science employs	1. Science employs	multiple methods	and types of
	multiple methods	multiple methods	and types of	reasoning that
	and types of	and types of	reasoning that	share many
	reasoning that	reasoning that	share many	common factors,
	share many	share many	common factors,	habits of mind, and
	common factors,	common factors,	habits of mind, and	norms
	habits of mind, and	habits of mind, and	norms	2. scientific
	norms	norms	2. scientific	knowledge is
	2. scientific	2. scientific	knowledge is	tentative, durable,
	knowledge is	knowledge is	tentative, durable,	and self-correcting
	tentative, durable,	tentative, durable,	and self-correcting	
	and self-correcting	and self-correcting		
Understand	Candidate fully	Candidate fully	Candidate explains	Candidate cannot
socially important	explains the	explains the	the following	explain the
issues related to	following aspects	following aspects	aspects of the	following aspects
science and	of the nature of	of NOS BUT DOES	nature of science	of the nature of
technology in their	science AND	NOT connect them	in a partial or	science:
field of licensure,	connects them to	to the	superficial way:	1. science is a
as well as	the investigations:	investigations:	1. science is a	creative endeavor
processes used to	1. science is a	1. science is a	creative endeavor	2. social, historical,
analyze and make	creative endeavor	creative endeavor	2. social, historical,	and cultural factors
decisions on such	2. social, historical,	2. social, historical,	and cultural factors	play a role in the
issues (4a)	and cultural factors	and cultural factors	play a role in the	construction of
	play a role in the	play a role in the	construction of	scientific
	construction of	construction of	scientific	knowledge
	scientific	scientific	knowledge	3. science has a
	knowledge	knowledge	3. science has a	subjective element
	3. science has a	3. science has a	subjective element	
	subjective element	subjective element		

Safety Assignment (PBA)

Standard	Accomplished	Target	Acceptable	Unsatisfactory
Understand the	Within self-	Given a	Candidate is able	Candidate is not
legal and ethical	developed lessons	hypothetical lab	to list the legal	able to list the
responsibilities of	and unit, candidate	activity, the	responsibilities of a	legal
science teachers	consistently	candidate is able to	teacher AND	responsibilities of a
for the welfare of	identifies the legal	identify the legal	describe how to	teacher AND is not
their students, the	responsibilities of	responsibilities of	hypothetically	able to describe
proper treatment	the teacher AND is	the teacher AND	address these	how to address
of animals, and the	able to describe	describe how to	responsibilities	those
maintenance and	how to address	address these		responsibilities
disposal of	these	responsibilities		
materials (9a)	responsibilities			
Know and practice	Within self-	Given a	Candidate is able	Candidate is not
safe techniques for	developed lessons	hypothetical	to list safe	able to list safe
the preparation,	and unit, candidate	activity, candidate	practices	practices
storage,	can safely prepare,	is able to list safe	associated with	associated with
dispensing,	store, dispense,	practices	materials including	materials in the
supervision, and	and dispose of	associated with	preparation,	science
disposal of all	materials used	materials	storage, disposal,	classroom
materials used in	during science	including	and supervision	ciassi com
science instruction	instruction AND	preparation,		
Soletide mistraction	provide	storage, disposal,		
	appropriate	and supervision		
	emergency	AND is able to		
	procedures to	outline		
	share with	appropriate		
	students for	emergency		
	activities	procedures for		
		the lab		
Va ann and fallann	VACUE If	Chara -	C	C
Know and follow	Within self-	Given a	Candidate is able	Candidate is not
emergency	developed lessons, candidate is able to	hypothetical	to list emergency	able to describe
procedures,		activity, candidate	procedures,	emergency
maintain safety	articulate safety concerns and	is able to list safety concerns and	explain the maintenance of	procedures,
equipment, and				explain the maintenance of
ensure safety	appropriate	appropriate	primary safety	
procedures appropriate for the	emergency procedures, as well	emergency procedures, as well	equipment, and determine how to	any safety equipment, or
activities and	as what safety	as what safety	address safety	determine how to
abilities of	equipment should	equipment should	concerns within a	address safety
students (9c)	be available and	be available and	particular activity	concerns for a
students (5c)	how to use it	how to use it	particular activity	particular activity
Treat all living	Within self-	Given a	Candidate is able	Candidate is not
organisms used in	developed lessons,	hypothetical	to list safe,	able to list safe,
the classroom and	candidate is able to	activity, candidate	humane, and	humane, and
found in the field	articulate safe,	is able to list safe,	ethical practices	ethical practices
in a safe, humane,	humane, and	humane, and	associated with the	associated with the
and ethical manner	ethical practices	ethical practices	use and disposal of	use and disposal of
and respect legal	associated with the	associated with the	living organisms	living organisms
restrictions on	use and disposal	use and disposal of		
their collection,	living organisms	living organisms		
keeping, and use				
_				

Original Lesson (PBA)

Criteria	Does Not Meet Standard	Approaches Standard	Meets Standard	Exceeds Standard
LESSON PLANNING				
The candidate identifies performance-based objectives and appropriate curriculum goals that are relevant to learners. InTASC 7(a)	The candidate does not identify performance-based objectives and appropriate curriculum goals that are relevant to learners.	The candidate identifies objectives and curriculum goals but they are not performance-based or appropriate for subject and/or grade level.	The candidate identifies performance-based objectives and appropriate curriculum goals and they are appropriate for subject and/or grade level.	The candidate identifies well-developed, performance-based objectives, appropriate curriculum goals that are appropriate for subject and/or grade level; correctly formulated; and addressed all domains.
The candidate identifies national/state/local standards that align with objectives and are appropriate for curriculum goals and are relevant to learners.	The candidate does not identify national/state/local standards that align with the objectives or the standards are not appropriate for curriculum goals or are not relevant to learners.	The candidate identifies national/state/local standards but the standards are not aligned with the objectives and/or marginally relevant to learners.	The candidate identifies national/state/ local standards that are aligned with the objectives and relevant to learners.	The candidate identifies national/state/ local standards that are clearly aligned with the objectives and relevant to learners.
The candidate continually seeks appropriate ways to employ technology to support assessment practice both to engage learners more fully and to assess and address learner needs. InTASC 6(i)	The candidate does not identify appropriate technology to engage learners even though it was available.	The candidate identify technology to engage learners though it would be ineffective to teach the content and address learner needs.	The candidate identifies appropriate technology to engage learners more fully and assess and address learner needs.	The candidate identifies effective, creative and appropriate technology to engage learners more fully and assess and enhance student learning needs.

The candidate facilitates learners' use of current tools and resources to maximize content learning in varied contexts. InTASC 5(c)	The candidate's plans do not provide evidence of opportunities for learners' use of current tools (technology) nor resources to maximize content learning in varied contexts.	The candidate's plans provide evidence of opportunities for learners' use of current tools and resources that are ineffective to maximize content learning in varied contexts.	The candidate's plans provide evidence of opportunities for learners' use of current tools and resources that are effective to maximize content learning in varied contexts.	The candidate's plans provide substantial evidence of multiple opportunities for learners' use of current tools and resources that are creative and effective to maximize content learning in varied contexts.	
The candidate plans how to achieve each student's learning goals, choosing accommodations to differentiate instruction for individuals and groups of learners. InTASC 7(b)	The candidate's lesson plan does not provide evidence of accommodations to differentiate instruction for individuals and groups of learners.	The candidate's lesson plan provides evidence of an effort to meet student's learning goals, and attempts accommodations to differentiate instruction for individuals and groups of learners.	The candidate's lesson plan provides evidence of successfully meeting each student's learning goals, and successfully makes accommodations to differentiate instruction for individuals and groups of learners.	The candidate's lesson plan provides evidence of successfully meeting each student's learning goals, and successfully makes a variety of accommodations to differentiate instruction for individuals and groups of learners.	
The candidate develops appropriate sequencing and pacing of learning experiences and provides multiple ways to demonstrate knowledge and skill. InTASC 7(c)	The candidate does not plan for appropriate sequencing and pacing of learning experiences. Tasks, methods, strategies are not stated.	The candidate plans for appropriate sequencing and pacing of learning experiences; but tasks, methods and strategies are not stated and/or not appropriate or effective for the lesson.	The candidate plans for appropriate sequencing and pacing of learning experiences; and all tasks, methods, and strategies are stated and/or are appropriate and effective for the lesson.	The candidate plans for appropriate sequencing and pacing of learning experiences; tasks, methods and strategies include a variety of creative, active learning, instructional strategies that address learner differences to maximize learning.	
PLANNED INSTRUCTIONAL STRATEGIES					
The candidate stimulates learner reflection on prior content knowledge, links new concepts to familiar concepts, and makes connections to learners' experiences. InTASC 4(d)	The candidate does not plan an opening activity that stimulates learner reflection on prior content knowledge, links new concepts to familiar concepts, nor makes connections to learners' experiences.	The candidate plans an opening activity that used learner prior content knowledge, but does not link new concepts to familiar concepts, or make connections to learners' experiences.	The candidate plans an opening activity that stimulates learner reflection on prior content knowledge, links new concepts to familiar concepts, and makes connections to learners' experiences.	The candidate plans an opening activity that actively stimulates learner reflection on prior content knowledge, effectively links new concepts to familiar concepts, and creatively makes connections to learners' experiences.	

The candidate engages learners in multiple ways of demonstrating knowledge and skill as part of the assessment process. InTASC 6(e) ASSESSMENTS	The candidate does not use assessment as closure to check for comprehension and student knowledge and skills.	The candidate uses assessment as closure to demonstrate knowledge and skills to check for comprehension but they are inappropriate and/or ineffective.	The candidate uses appropriate assessment strategies as closure to demonstrate knowledge and skills to check for understanding.	The candidate uses creative appropriate assessments for closure to demonstrate knowledge and skills to check for comprehension.
The candidate plans instruction based on pre-assessment data, prior learning knowledge and skill. InTASC 7(d)	The candidate does not plan instruction based on pre- assessment data, prior learning knowledge or skills.	The candidate plans instruction based on pre-assessment data, prior learning knowledge and skills but it was not effective.	The candidate plans instruction based on pre-assessment data, prior learning knowledge and skill. Pre-assessment strategy/method appropriate and effectively assess student prior knowledge.	The candidate plans instruction based on pre-assessment strategy/method that are creative and effective way to assess student prior knowledge and skills and to guide instruction.
The candidate designs assessments that match learning objectives with assessment methods and minimizes sources of bias that can distort assessment results. InTASC 6(b)	The candidate's lesson design does not include postassessments strategies or methods.	The candidate's lesson design includes post-assessments strategies or methods but the strategies/methods were not effective .	The candidate's lesson design includes post-assessments that were appropriate to effectively assess student learning.	The candidate's post-assessment matches learning objectives and includes creative strategies to effectively assess student learning.

IMPORTANT INFORMATION FOR LICENSURE COMPLETION

Student Clinical Practice: Internship Requirements

Memo:

To: all CEHD students seeking student teaching internships in spring 2018 and forward

From: Jeff Davis, Director of Educator Preparation, CEHD

Re: Internship application requirements

Date: May 1, 2017

<u>Students</u> – please note the following requirements for Spring 2018 internship applications. <u>No extensions</u> to the application deadlines will be given for missing/incorrect/failing test scores, missing endorsements, or missing/incorrect CPR/AED/First Aid certifications.

Student Clinical Practice: Internship Application Requirements

TESTING

Since 2015, internship applications must include **all** <u>official and passing</u> test scores must be submitted and in the Mason system (i.e. Banner/PatriotWeb) by the internship application deadline. <u>Allow a **minimum** of six weeks for official test scores to arrive at Mason</u>. Testing too close to the application deadline means scores will not arrive in time and the internship application <u>will not be accepted</u>.

For Spring 2018 internships, this means that the latest you could test in time for scores to be reported to Mason by September 15th is **August 1**st.

Required tests:

- Praxis Core Academic Skills for Educators Tests (or qualifying substitute)
- VCLA
- RVE (specific programs only...see link below)
- ACTFL (Foreign Language only...unofficial scores are acceptable for this test only)
- Praxis II (content knowledge exam in your specific endorsement area)

For details, please check http://cehd.gmu.edu/teacher/test/

ENDORSEMENTS

Please note that ALL endorsement coursework must be completed, with all transcripts submitted and approved by the CEHD Endorsement Office, prior to the internship application deadline. Since the internship application must be submitted in the semester prior to the actual internship, please make an appointment to meet with the Endorsement Specialist and plan the completion of your Endorsements accordingly.

<u>CPR/AED/First Aid – NEW hands-on training required for licensure!</u>

Due to a recent change in Virginia law, effective July 1, 2017, all new license applications and license renewals must include verification that "hands-on" First Aid/CPR/AED training was completed. This means that applications for spring 2018 internships must also include verification of completing "hands-on" training. After June 30, 2017, the online training will no longer be accepted.

Emergency First Aid, CPR, and Use of AED Certification or Training requirement must be submitted and in the Mason system (i.e. Banner/PatriotWeb) by the application deadline. Students must submit one of the "acceptable evidence" documents listed at http://cehd.gmu.edu/teacher/emergency-first-aid to the CEHD Educator Preparation Office. In order to have the requirement reflected as met in the Mason system, documents can be scanned/e-mailed to internsh@gmu.edu or dropped-off in Thompson Hall, Suite 1700.

<u>DYSLEXIA AWARENESS TRAINING – NEW requirement for licensure!</u>

Effective July 1, 2017, every person seeking initial licensure or renewal of a license shall complete awareness training, provided by VDOE, on the indicators of dyslexia, as that term is defined by the board and regulations, and the evidence-based interventions and accommodations for dyslexia. The training module is located at

http://www.doe.virginia.gov/teaching/licensure/dyslexia-module/story.html.

Similar to the Child Abuse Prevention Module, students will need to save and print out the completion certificate at the end of the module.

BACKGROUND CHECKS/FINGERPRINTING

All local school systems require students to complete a criminal background check through their human resources office (<u>not</u> through George Mason University) **prior to beginning the internship**. Detailed instructions on the process will be sent to the student from either the school system or Mason.

When applying for their background check/fingerprinting, students are **strongly advised** to disclose any/all legal incidents that may appear on their records. School divisions can and will withhold internship placement if discrepancies are found between a student's disclosure and their official judicial record. Students must assume the risk that classes may be deferred and their program progress delayed or altered due to the individual severity of notations on such a check and review by individual agencies.

PLEASE NOTE:

Your G# must be clearly noted (visible and legible) on the face of any & all documents that you submit.

APPLICATION

The internship application can be downloaded at http://cehd.gmu.edu/teacher/internships-field-experience

DEADLINES

Spring 2018 internship application deadline:

- * Traditional Internship: September 15, 2017
- * On-the Job Internship: *November 1, 2015*

If you have any questions about the above requirements, <u>don't wait</u> - please contact your advisor or the Clinical Practice Specialist at <u>internsh@gmu.edu</u> Please be sure to include your G# and program/content area information in your email.

This communication to you, including all requirements and deadlines, will be referenced upon receipt of any request for application deadline extension.