Faculty
Name: Lesley King
Office hours: By appointment
Office location: 2400 Thompson Hall
Office phone: 703-993-3640
Email address: lking3@gmu.edu

Prerequisites/Corequisites
Admission to the elementary education licensure program.

University Catalog Course Description
Introduces methods for teaching all children topics in arithmetic, geometry, algebra, probability, and statistics in elementary grades. Focuses on using manipulatives and technologies to explore mathematics and solve problems.

Course Overview
In this course we will begin an inquiry into mathematics teaching and learning that will guide you in your first teaching job and give you the tools that will enable you to continue to inquire and learn as part of your work as a teacher. Class sessions will be interactive and will include a variety of hands-on experiences with concrete and virtual manipulatives appropriate for elementary school mathematics. We will explore the teaching of mathematics, investigating both what to teach and how to teach it. We will explore what it means to do mathematics and what it means to understand mathematics through individual, small group, and large group mathematical problem solving. We will investigate ways to represent understandings of mathematical concepts, communicate reasoning about mathematical ideas, and construct mathematical arguments. We will investigate and read about ways children might represent mathematical concepts, looking at ways to help children build connections and see relationships among mathematical ideas. We will explore characteristics of a classroom environment conducive to mathematical learning by reading and discussing the importance of mathematical tasks, mathematical tools, the roles of teachers and students, and the assessment of mathematical understanding.
Course Delivery Method

This course will be delivered using a lecture format.

This course includes multiple instructional strategies and formats including face to face and asynchronous online meetings. Individual session formats vary and may include lecture, small group/large group discussion, hands-on, interactive work, student presentations, and cooperative learning. Practical applications of theory are explored in group activities.

Learner Outcomes or Objectives

This course is designed to enable students to do the following:

A. Know what constitute the essential topics in mathematics of the modern early and intermediate grades school program.
B. Identify and use selected manipulatives and technology such as linking cubes, attribute blocks, geoboards, base-10 blocks, fraction circles, tangrams, calculators, and computers to teach appropriate mathematics content topics in the early and middle grades.
C. Identify and use various instructional strategies and techniques (cooperative and peer group learning, activity centers, laboratories and workshops, teacher-directed presentations, etc.) to teach mathematical content topics appropriate for the early and intermediate grades to all children, including those from non-mainstreamed populations.
D. Identify and use alternative methods for assessing students’ work in mathematics in the early and intermediate grades.
E. Solve problems in the mathematical content areas of logic, number theory, geometry, algebra, probability, and statistics appropriate for adaptation to the early and intermediate grades.
F. Know and explain the learning progression in relation to the standards-based mathematics curriculum, the key elements of the National Council of Teachers of Mathematics Principles and Standards for School Mathematics, and the key elements of the Virginia Standards of Learning for Mathematics.

Additionally, this course supports the CEHD Core Values of collaboration, ethical leadership, research-based practice, social justice, and innovation. Statements of these goals are at http://cehd.gmu.edu/values/.

Professional Standards (Interstate Teacher Assessment and Support Consortium (InTASC) & Association for Childhood Education International Elementary Education Standards (ACEI):)
Upon completion of this course, students will have met the following professional standards:

<table>
<thead>
<tr>
<th>Course Student Outcomes (above)</th>
<th>INTASC Standard (2011)</th>
<th>ACEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Essential math</td>
<td>#4</td>
<td>1.0</td>
</tr>
<tr>
<td>B Planning and Teaching using manipulatives</td>
<td>#7</td>
<td>3.1</td>
</tr>
<tr>
<td>C Instructional Strategies</td>
<td>#8</td>
<td>1.0, 2.3, 3.1, 3.3, 3.4</td>
</tr>
<tr>
<td>D Assessing</td>
<td>#6</td>
<td>4.0</td>
</tr>
<tr>
<td>E Problem Solving</td>
<td>#5</td>
<td>2.3</td>
</tr>
<tr>
<td>F Learner Development and understanding of Learning Progression</td>
<td>#2/#1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

INTASC Standard (2011)

Standard #4: Content Knowledge
The teacher understands the central concepts, tools of inquiry, and structures of the discipline(s) he or she teaches and creates learning experiences that make these aspects of the discipline accessible and meaningful for learners to assure mastery of the content.

Standard #7: Planning for Instruction
The teacher plans instruction that supports every student in meeting rigorous learning goals by drawing upon knowledge of content areas, curriculum, cross-disciplinary skills, and pedagogy, as well as knowledge of learners and the community context.

Standard #8: Instructional Strategies
The teacher understands and uses a variety of instructional strategies to encourage learners to develop deep understanding of content areas and their connections, and to build skills to apply knowledge in meaningful ways.

Standard #6: Assessment
The teacher understands and uses multiple methods of assessment to engage learners in their own growth, to monitor learner progress, and to guide the teacher's and learner's decision making.

Standard #5: Application of Content
The teacher understands how to connect concepts and use differing perspectives to engage learners in critical thinking, creativity, and collaborative problem solving related to authentic local and global issues.

Standard #1: Learner Development
The teacher understands how learners grow and develop, recognizing that patterns of learning and development vary individually within and across the cognitive, linguistic, social, emotional, and physical areas, and designs and implements developmentally appropriate and challenging learning experiences.

Standard #2: Learning Differences
The teacher uses understanding of individual differences and diverse cultures and communities to ensure inclusive learning environments that enable each learner to meet high standards.
<table>
<thead>
<tr>
<th>Course & PBA</th>
<th>INTASC</th>
<th>ACEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>552 Math</td>
<td>#4 Content Knowledge</td>
<td>1.0 Development</td>
</tr>
<tr>
<td>Student Assessment Interview</td>
<td>#1 & #2 Learner Development & Differences #6 Assessment</td>
<td>2.3 Math 3.1 Planning Instruction 3.5 Communication 4.0 Assessment</td>
</tr>
</tbody>
</table>

Required Text

Recommended Texts

Course Performance Evaluation

Students are expected to submit all assignments on time in the manner outlined by the instructor (e.g., Blackboard, Tk20, hard copy).
Assignments and Examinations

Participation & Professional Dispositions (10%)
Addresses Learner Outcomes: A, B, C, D, E, F
Rich, meaningful, problems will be assigned for each class session. Students are expected to complete these problems during class and incorporate their thinking about strategies used to solve the problems in class discussions. Work on problem sets will be shared in class and on occasion may be collected and evaluated. Students are expected to analyze and reflect on solution strategies, provide differentiated approaches to center activities, and actively participate in class discussions by applying field experiences and class readings. Professional dispositions are to be displayed at all times while interacting with the instructor and other students. In order to maintain a focused class, laptops and cell phones are to be used exclusively for the current class topic. Examples of this include searching for math standards, videos of mathematical algorithms, taking pictures of manipulatives, etc. Emailing, texting, and other forms of communication and social media are not permitted during class time unless it is directly related to the activity. In addition, students should refrain from grading papers and preparing lesson materials for their school placements during class time.

Article Summaries and Reflections (10%)
Addresses Learner Outcomes: A, B, C, D, E, F
Students will read five assigned articles and write a 250-word reflection for each. These will be submitted on Blackboard.

Student Assessment Interview: Course Performance Based Assessment (30%)
Addresses Learner Outcomes: A, B, C, D, F
In order to plan effective instruction, you will need to know how to assess children’s knowledge of mathematical concepts. One way to assess children’s thinking is a diagnostic assessment. This assignment has two parts: (1) Design a plan for the assessment, assessing a specific mathematics topic using concrete, pictorial and abstract representations, (2) Conduct the assessment with a child and write a report describing the outcome of the assessment. Based upon feedback from the instructor on your plan, you may make modifications to the final plan and report. The PBA will be turned in via Tk20 on Blackboard, under Assessments.

Group Problem-Based Lesson Plan (15%): The first lesson will be taught by a small group and presented to your classmates. Each group is expected to: 1) design a lesson and create a brief Power Point Presentation and e-mail these to your instructor before class; 2) anticipate possible student responses by solving the problem using all three representations (concrete, pictorial, abstract); and 3) bring 10 copies of the anticipated student responses to class on the day of the presentation. The group will complete one written reflection on this experience. See Blackboard for more detail.

Individual Problem-Based Lesson Plan (15%): The second lesson will be taught by an individual and presented to your classmates. Each individual is expected to: 1) design a lesson and create a brief Power Point Presentation and e-mail these to your instructor before class; 2) anticipate possible student responses by solving the problem using all
three representations (concrete, pictorial, abstract); and 3) bring 10 copies of the anticipated student responses to class on the day of the presentation. Each individual will complete a written reflection on this experience. See Blackboard for more detail.

Mathematics Content and Pedagogy Final Exam (20%)
Addresses Learner Outcomes: C, D, E

The final exam will be completed in class and will cover both math content and pedagogy.

Other Requirements
- **Attendance:** It is your responsibility to attend all class sessions. You are held accountable for all information from each class session whether you are present or not. Reasons for any absence must be reported to the instructor in writing.

- **Tardiness:** It is your responsibility to be on time for each class session. Reasons for any absence must be reported to the instructor in writing.

Note: The professor reserves the right to add, alter, or omit any assignment as necessary during the course of the semester. Students will always receive advanced notice of any modifications.
Course Performance Evaluation Weighting
The assignments across the semester are intended to further your understandings of what it means to teach, learn, and assess mathematics in light of current reforms in mathematics education. All assignments are to be turned in to your instructor on time. **Late work will not be accepted for full credit.** If the student makes prior arrangements with the instructor, assignments turned in late will receive a 10% deduction from the grade per late day or any fraction thereof (including weekends and holidays).

- Participation and Professional Dispositions (10%)
- Article Reflections (10%)
- Individual Student Assessment (30%)
- Problem-Based Lesson Plans and Reflections (30%)
- Mathematics Content & Pedagogy Final Exam (20%)

Grading Policies
The mathematics education courses in GSE’s Elementary Education Program integrate pedagogy and mathematics content appropriate for the elementary school grades. For students to earn a grade of A in the course, they must demonstrate excellence in both the pedagogical knowledge and the content knowledge of the mathematics appropriate at their level of teaching. Thus, the grading in the course is structured to help evaluate fairly student excellence in both areas. Problem sets and assessment work focuses primarily on ascertaining student excellence in handling mathematics content appropriate for the elementary grades, and represents 50% of students’ grades. Pedagogical knowledge is ascertained primarily from readings, assignments and participation in the course, and represents 50% of students’ grades. Therefore students who demonstrate excellence in both pedagogical knowledge and content knowledge receive grades of A.

At George Mason University course work is measured in terms of quantity and quality. A credit normally represents one hour per week of lecture or recitation or not fewer than two hours per week of laboratory work throughout a semester. The number of credits is a measure of quantity. The grade is a measure of quality. The university-wide system for grading graduate courses is as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>GRADING</th>
<th>Grade Points</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>94-100</td>
<td>4.00</td>
<td>Represents mastery of the subject through effort beyond basic requirements.</td>
</tr>
<tr>
<td>A-</td>
<td>90-93</td>
<td>3.67</td>
<td>Reflects an understanding of and the ability to apply theories and principles at a basic level</td>
</tr>
<tr>
<td>B+</td>
<td>85-89</td>
<td>3.33</td>
<td>Denotes an unacceptable level of understanding and application of the basic elements of the course</td>
</tr>
<tr>
<td>B</td>
<td>80-84</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>C*</td>
<td>70-79</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>F*</td>
<td><69</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Note: “C” is not satisfactory for a licensure course.
“F” does not meet requirements of the Graduate School of Education
TK20/Performance-Based Assessment(s) Submission Requirement
Every student registered for any Elementary Education course with a required TK20 performance-based assessment (designated as such in the syllabus) must submit this/these assessment(s) (**EDCI 552: Student Assessment Interview**) to Tk20 through ‘Assessments’ in Blackboard. Failure to submit the assessment(s) to Tk20 (through Blackboard) will result in the course instructor reporting the course grade as Incomplete (IN). Unless this grade is changed upon completion of the required Tk20 submission, the IN will convert to an F nine weeks into the following semester.

Professional Dispositions
Students are expected to exhibit professional behaviors and dispositions at all times.
(See Elementary Education Program Handbook).

Core Values Commitment
The College of Education and Human Development is committed to collaboration, ethical leadership, innovation, research-based practice, and social justice. Students are expected to adhere to these principles: http://cehd.gmu.edu/values/.
GMU Policies and Resources for Students

Policies

Students must adhere to the guidelines of the Mason Honor Code (see http://oai.gmu.edu/the-mason-honor-code/).

Students must follow the university policy for Responsible Use of Computing (see http://universitypolicy.gmu.edu/policies/responsible-use-of-computing/).

Students are responsible for the content of university communications sent to their Mason email account and are required to activate their account and check it regularly. All communication from the university, college, school, and program will be sent to students solely through their Mason email account.

Students with disabilities who seek accommodations in a course must be registered with George Mason University Disability Services. Approved accommodations will begin at the time the written letter from Disability Services is received by the instructor (see http://ods.gmu.edu/).

Students must follow the university policy stating that all sound emitting devices shall be silenced during class unless otherwise authorized by the instructor.

Campus Resources

Support for submission of assignments to Tk20 should be directed to tk20help@gmu.edu or https://cehd.gmu.edu/api/tk20. Questions or concerns regarding use of Blackboard should be directed to http://coursessupport.gmu.edu/.

The George Mason University Writing Center staff provides a variety of resources and services (e.g., tutoring, workshops, writing guides, handbooks) intended to support students as they work to construct and share knowledge through writing (see http://writingcenter.gmu.edu/).

The George Mason University Counseling and Psychological Services (CAPS) staff consists of professional counseling and clinical psychologists, social workers, and counselors who offer a wide range of services (e.g., individual and group counseling, workshops and outreach programs) to enhance students’ personal experience and academic performance (see http://caps.gmu.edu/).

The George Mason University Office of Student Support staff helps students negotiate life situations by connecting them with appropriate campus and off-campus resources. Students in need of these services may contact the office by phone (703-993-5376). Concerned students, faculty and staff may also make a referral to express concern for the safety or well-being of a Mason student or the community by going to http://studentsupport.gmu.edu/, and the OSS staff will follow up with the student.

For additional information on the College of Education and Human Development, please visit our website https://cehd.gmu.edu/.
<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
<th>Readings Due</th>
<th>Assignments Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday, June 26</td>
<td>On-Line</td>
<td>Mathematical Quality of Instruction (MQI) document – this can be found on Bb</td>
<td>Note: Math Autobiography is due on Wednesday, June 28 – directions can be found on Bb</td>
</tr>
<tr>
<td></td>
<td>Asynchronous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday, June 28</td>
<td>What is Problem Solving?</td>
<td>Chapter 3: Teaching through Problem Solving</td>
<td>Submit Math Autobiography on Bb</td>
</tr>
<tr>
<td></td>
<td>Selecting Worthwhile Tasks</td>
<td>Chapter 4: Planning in the Problem-Based Classroom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planning for Mathematics Instruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MQI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identifying a student for the PBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday, June 30</td>
<td>Number Sense, Counting, Patterns and Place Value</td>
<td>Chapter 5: Creating Assessments for Learning</td>
<td>Reflection: Orchestrating Discussions – submit on Bb</td>
</tr>
<tr>
<td></td>
<td>Assessment: Conducting a Diagnostic Interview</td>
<td>Chapter 8: Early Number Concepts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Illuminations Lessons</td>
<td>Orchestrating Discussions (Smith, Hughes, Engle, & Stein, 2009) – this article can be found on Bb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Good Questions Lessons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday, July 5</td>
<td>Helping Children Master the Basic Math Facts</td>
<td>Chapter 10: Basic Facts</td>
<td>Reflection: 13 Rules That Expire – submit on Bb</td>
</tr>
<tr>
<td></td>
<td>Developing Strategies for Whole Number Place Value Concepts</td>
<td>Chapter 11: Place Value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group Lesson Planning</td>
<td>13 Rules That Expire (Karp, Bush, & Dougherty, 2014) – this article can be found on Bb</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
<td>Reading Material</td>
<td>Reflection</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Friday, July 7 | Developing Strategies for Whole Number Computation
Selecting and Sequencing Student Work
Group Lesson Planning | Chapter 9: Developing Meaning of Operations
Chapter 12: Addition and Subtraction
Constructing Meaning: Standards for Mathematical Practice (Bleiler, Baxter, Stephens, & Barlow, 2015) – this article can be found on Bb | Reflection: *Constructing Meaning: Standards for Mathematical Practice* – submit on Bb |
| Monday, July 10 | Developing Strategies for Whole Number Computation
Group Lesson Presentations | Chapter 13: Multiplication and Division
Reverse and Add to 100: Explorations in Place Value (Edwards, Quinlan, & Strayer, 2016) – this article can be found on Bb | Reflection: *Reverse and Add to 100: Explorations in Place Value* – submit on Bb |
| Wednesday, July 12 | Fraction Concepts and Computation
Group Lesson Presentations | Chapter 15: Fractions
What's the Big Deal About Vocabulary? (Dunston & Tyminski, 2013) – this article can be found on Bb | Reflection: *What's the Big Deal About Vocabulary?* – submit on Bb |
| Friday, July 14 | On-Line
Asynchronous | Work on Individual Lesson Plan and Power Point Presentation | Group Lesson Reflection – submit on Bb |
| Monday, July 17 | Fraction Concepts and Computation
Ratios, Proportions, and Proportional Reasoning
Individual Lesson Presentations | Chapter 16: Fractions Operations
Chapter 18: Ratios, Proportions, and Proportional Reasoning | |
<table>
<thead>
<tr>
<th>Date</th>
<th>Subject</th>
<th>Chapters</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday, July 19</td>
<td>Decimals</td>
<td>Chapter 17: Decimals & Percent</td>
<td>Individual Lesson Presentations</td>
</tr>
<tr>
<td>Friday, July 21</td>
<td>Algebraic Thinking</td>
<td>Chapter 14: Algebraic Thinking</td>
<td>Performance Based Assessment Due</td>
</tr>
<tr>
<td>Monday, July 24</td>
<td>Measurement</td>
<td>Chapter 19: Measurement</td>
<td>Individual Lesson Reflection – submit on Bb</td>
</tr>
<tr>
<td>Wednesday, July 26</td>
<td>Final Exam</td>
<td>Chapter 20: Geometry</td>
<td></td>
</tr>
<tr>
<td>Friday, July 28</td>
<td>On-Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asynchronous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Individual Conferences if needed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assessment Rubric(s)

Teacher Candidate Instruction and Assessment Plan

Assessment Objective
The candidate will use knowledge of individual learning differences and assessment to develop an instructional plan for a student with developmental, learning, physical or linguistic differences, including a plan for assessing the student’s progress.

Rationale
Lesson planning is an essential skill for an educator. A lesson plan is a road map for instruction. When planning teachers and teacher candidates need to answer four main questions:

- Who are my students? (Context/Student Needs)
- What do my students need to know and be able to do? (Objectives)
- How will I get all students to know and do the new tasks? (Teaching and Learning)
- How will I know they know what was taught? (Assessments)

The first step in planning is identifying the learning objectives for the lesson-based upon student abilities, challenges, and prior knowledge. Before developing specific learning activities, determine how you will assess if students have met the lesson objectives. Once you know how you will assess student learning, you can develop activities that align instruction with the assessment. Additionally, a teacher must consider student prior knowledge, how to differentiate to meet student needs, and how to do so within the time allotted. Lesson plans include pacing, transitions, checking for understanding, and ideas for re-teaching or extending learning based upon student needs.

The planning process is the same whether you are planning a lesson for a class or for an individual. For this assessment you will develop an instructional plan for a student with developmental, learning, physical or linguistic differences, including a plan for assessing the student’s progress.

Assessment Task Directions
Candidates will develop an individualized plan for a child with developmental, learning, physical, or linguistic differences within the context of the general environment and curriculum that includes the following sections:

Section 1. Description of the individual student that includes cognitive, linguistic, social, emotional, and/or physical developmental skill levels and abilities, interests and educational progress and statement of educational need.

Section 2. Identification of and rationale for three learning objectives that support meaningful learning outcomes for the student.

Section 3. Description of and rationale for at least three evidence-based instructional strategies that address the identified learning objectives and reflect the student’s cognitive, linguistic, social, emotional, and/or physical developmental skill levels and abilities, interests and educational needs.
Section 4. Description of and rationale for instructional adaptations and accommodations needed, including the use of augmentative and alternative communication systems and assistive technologies or other appropriate technologies.

Section 5. Statement of plan for the assessment and documentation of the student’s progress toward the identified objectives.

Section 6: Reflection: The candidate uses ongoing analysis and reflection to improve planning and practice.
<table>
<thead>
<tr>
<th>Criteria</th>
<th>Does Not Meet Standard 1</th>
<th>Approaches Standard 2</th>
<th>Meets Standard 3</th>
<th>Exceeds Standard 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1 Description of Individual Student</td>
<td>The candidate regularly assesses individual and group performance in order to design and modify instruction to meet learners’ needs in each area of development (cognitive, linguistic, social, emotional, and physical) and scaffolds the next level of development. IntASC 1(a) ACEI 1.0 CAEP 1a</td>
<td>The candidate provides description of student that includes appropriate assessment data related to some but not all of the following: cognitive, linguistic, social, emotional, and/or physical developmental skill levels and abilities, interests, or educational progress.</td>
<td>The candidate provides description of student that includes appropriate assessment data related to all of the following: cognitive, linguistic, social, emotional, and/or physical developmental skill levels and abilities, interests, and educational progress.</td>
<td>The candidate provides description of student that includes both appropriate and multiple forms of assessment data on all of the following: cognitive, linguistic, social, emotional, and/or physical developmental skill levels and abilities, interests, and educational progress. The candidate describes and provides examples of impact of student characteristics on learning.</td>
</tr>
</tbody>
</table>

The candidate does not provide a description or the description of student does not include assessment data related to cognitive, linguistic, social, emotional, and/or physical developmental skill levels and abilities, interests, or educational progress.

The candidate provides description of student that includes appropriate assessment data related to some but not all of the following: cognitive, linguistic, social, emotional, and/or physical developmental skill levels and abilities, interests, or educational progress.
Statement of Educational Need

| The candidate effectively uses multiple and appropriate types of assessment data to identify each student’s learning needs and to develop differentiated learning experiences. | The candidate **does not** address student educational needs or **inappropriately uses** assessment data to create a statement of educational need. | The candidate uses assessment data to create an appropriate statement of educational need that is **marginally** aligned with assessment results. | The candidate **effectively** uses assessment data from **multiple sources** to create a **thorough and appropriate** statement of educational need that is **aligned** with assessment results. |

InTASC 6(g)
ACEI 4.0
CAEP 3a

Section 2
Identification of Learning Objectives

| The candidate effectively uses multiple representations and explanations that capture key ideas in the discipline, guide learners through learning progressions, and promote each learner’s achievement of content standards | The candidate identifies learning objectives that are **either (a) incomplete** because related outcomes are not identified or (b) the objectives are **not directly related** to student educational need. | The candidate identifies learning objectives with related outcomes that are **relevant** to individual student needs. | The candidate identifies distinct learning objectives with related outcomes that are relevant to individual student needs. Effectively uses multiple representations and explanations that capture key ideas in the discipline, guide learners through learning progressions, and promote each learner’s achievement of content standards. |

InTASC 7(a)
ACEI 2.3
CAEP 2b
<table>
<thead>
<tr>
<th>Identification of Rationale for Learning Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>The candidate plans for instruction based on formative and summative assessment data, prior learner knowledge, and learner interest.</td>
</tr>
</tbody>
</table>

InTASC 7(d)
ACEI 1.0
CAEP 3a

| Section 3
Description of Instructional Strategies |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The candidate plans how to achieve each student’s learning goals, choosing appropriate strategies and accommodations, resources, and materials to differentiate instruction for individuals and groups of learners.</td>
</tr>
</tbody>
</table>

InTASC 7b
ACEI 2.3
CAEP 2b

The candidate provides **specific sources of** evidence for the instructional strategy.
Rationale for Instructional Strategies

<table>
<thead>
<tr>
<th>The candidate understands that each learner’s cognitive, linguistic, social, emotional, and physical development influences learning and knows how to make instructional decisions that build on learners’ strengths and needs.</th>
<th>The candidate does not provide rationales which are aligned to the specific instructional strategies and/or the relationship of the instructional strategies to the learning objectives and student educational needs is missing or unclear.</th>
<th>The rationales provided do not aligned to the specific instructional strategies and, the relationship of the instructional strategies to the learning objectives that meet student educational needs is unclear.</th>
<th>The rationales provided are aligned with the strategies and, the relationship of the instructional strategies to specific learning objectives that meet student educational needs is clearly and effectively identified.</th>
</tr>
</thead>
</table>

InTASC 1(e)

ACEI 3.1

CAEP 3

Section 4 Description of Instructional Adaptation

<table>
<thead>
<tr>
<th>The candidate accesses resources, supports, and specialized assistance and services to meet particular learning differences or needs.</th>
<th>The candidate does not identify either adaptations or accommodations to support student achievement of learning objectives.</th>
<th>The candidate identifies either adaptations or accommodations that minimally support student achievement of learning objectives.</th>
<th>The candidate identifies and describes appropriate adaptations or accommodations that clearly support student achievement of learning objectives.</th>
<th>The candidate identifies and thoroughly describes appropriate adaptations or accommodations that clearly support student achievement of learning objectives.</th>
</tr>
</thead>
</table>

InTASC 2(f)

ACEI 3.1

CAEP 3a
Rationale for Instructional Adaptation

<table>
<thead>
<tr>
<th>The candidate knows a range of evidence-based instructional strategies, resources, and technological tools and how to use them effectively to plan instruction that meets diverse learning needs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The candidate does not provide rationales that are aligned to the adaptations and accommodations and/or the relationship of the adaptations and accommodation s to student educational needs is missing or unclear.</td>
</tr>
<tr>
<td>The rationales marginally provides evidence to support the adaptations and accommodations and the relationship of the adaptations and accommodation s to student educational needs is unclear.</td>
</tr>
<tr>
<td>The rationales provide adequate evidence to support the adaptations and accommodations and the relationship of the adaptations and accommodation s to student educational needs is clearly identified.</td>
</tr>
<tr>
<td>The rationales provide evidence-based support for the specific adaptations and accommodations and the relationship of the adaptations and accommodation s to student educational needs is clearly and thoroughly identified.</td>
</tr>
</tbody>
</table>

InTASC 7(k)
ACEI 2.3
CAEP 3c

Section 5 Assessment and Documentation of Student Progress

<table>
<thead>
<tr>
<th>The candidate designs assessments that match learning objectives with assessment methods balances the use of formative and summative assessment as appropriate to support, verify, and document learning.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The candidate does not describe an assessment plan that that evaluates all student learning objectives or describes a plan that does not directly measure all of the student learning objectives (e.g., is not observable, measurable).</td>
</tr>
<tr>
<td>The candidate describes an assessment plan that evaluates all student learning objectives but does not include documentation of both formative and summative measures that does not address possible assessment bias.</td>
</tr>
<tr>
<td>The candidate describes an assessment plan that evaluates all student learning objectives and includes both formative and summative assessments that minimize sources of bias.</td>
</tr>
<tr>
<td>The candidate describes an assessment plan that evaluates all student learning objectives, includes formative and summative assessments that minimize sources of bias and includes multiple data sources for each objective.</td>
</tr>
</tbody>
</table>
Section 6: (addition) Reflection

<table>
<thead>
<tr>
<th>The candidate uses ongoing analysis and reflection to improve planning and practice.</th>
<th>There was no evidence that the candidate used ongoing analysis and/or reflection to improve planning and practice.</th>
<th>The candidate uses marginal analysis and reflection strategies to improve planning and practice.</th>
<th>The candidate uses ongoing analysis and reflection to improve planning and practice.</th>
<th>The candidate effectively uses ongoing analysis and deep reflection to improve planning and practice.</th>
</tr>
</thead>
</table>

Additional Program Content

Important Information for Licensure Completion:

Beginning with Spring 2015 internships, all official and passing test scores must be submitted and in the Mason system (i.e. Banner/PatriotWeb) by the internship application deadline. Allow a minimum of six weeks for official test scores to arrive at Mason. Testing too close to the application deadline means scores will not arrive in time and the internship application will not be accepted.

Required tests (*For details, please check [http://cehd.gmu.edu/teacher/test/](http://cehd.gmu.edu/teacher/test)*):

- Praxis Core Academic Skills for Educators Tests (or qualifying substitute)
- VCLA
- RVE
- Praxis II (Content Knowledge exam in your specific endorsement area)

Endorsements:

Please note that ALL endorsement coursework must be completed, with all transcripts submitted and approved by the CEHD Endorsement Office, prior to the internship application deadline. Since the internship application must be submitted in the semester prior to the actual internship, please make an appointment to meet with the Endorsement Specialist and plan the completion of your Endorsements accordingly.

CPR/AED/First Aid:

Beginning with spring 2015 internships, verification that the Emergency First Aid, CPR, and use of AED Certification or Training requirement must be submitted and in the Mason system (i.e. Banner/PatriotWeb) by the application deadline. Students must submit one of the "acceptable evidence" documents listed at http://cehd.gmu.edu/teacher/emergency-first-aid to CEHD Student and Academic Affairs. In order to have the requirement reflected as met in the Mason system, documents can be scanned/e-mailed to CEHDacad@gmu.edu or dropped-off in Thompson Hall, Suite 2300.
Background Checks/Fingerprints:
All local school systems require students to complete a criminal background check through their human resources office (not through George Mason University) prior to beginning field hours and internship. Detailed instructions on the process will be sent to the student from either the school system or Mason. Students are strongly advised to disclose any/all legal incidents that may appear on their records. The consequence of failing to do so, whether or not such incidents resulted in conviction, is termination of the field hours or internship.

Please Note: Your G-Number must be clearly noted (visible and legible) on the face of the document(s) that you submit.

Application:
The internship application can be downloaded at http://cehd.gmu.edu/teacher/internships-field-experience.