EDCI 673-001
ADVANCED METHODS OF TEACHING SCIENCE IN THE SECONDARY SCHOOL

Fall Semester, 2015

Instructor: Len Annetta, Ph.D.
Date and Time: August 31rd – December 21st (Monday 7:20– 10:00 pm)
Class Location: Thompson Hall 2020
Telephone: 703-993-5249
E-mail: lannetta@gmu.edu
Office: Thompson 1406
Office Hours: By appointment

REQUIRED TEXT RESOURCES
N/A

RECOMMENDED TEXT RESOURCES
Saddle River, NJ: Pearson

Online Resources

Other articles/handouts will be distributed in class or posted on-line at the course website. (Your GMU email address is required for communication with the course instructor and for using Blackboard!)

Course Materials Online
The Blackboard site can be found at http://courses.gmu.edu. Use the same login as your GMU email.

Course Description
Prerequisite: EDCI 573. This is the second course in a two-part sequence of courses for preservice science teachers. The course is designed to build on the fundamentals of curriculum design and teaching from the first course and focus on using technology for students to investigate science and adapting instruction and assessment for the diverse needs of learners. In addition to using technology in the schools, preservice teachers will modify lessons and assessments to address the diverse needs of students, implement those lessons and assessments with their peers, and analyze the effectiveness of those lessons and assessments.

Goals

- Understand the relationship of assessment in understanding student learning and informing instruction; RESEARCH-BASED PRACTICE; SPA STANDARD 8
- Design evidence-based assessment techniques in science instruction; RESEARCH-BASED PRACTICE; SPA STANDARD 8
- Build a repertoire of science teaching and assessment strategies using technology to help students become scientifically literate, think critically and creatively, and see relationships among science, technology, and society; RESEARCH-BASED
PRACTICE; INNOVATION; COLLABORATION; SPA STANDARDS 1, 2, 3, 5, 6, 8, 10

- Critique, adapt, and construct standards-based lessons including assessment and hands-on experiences for the diverse needs of learners including gender equity, cultural diversity, English language learners, gifted/talented students, and students with learning, physical, social, and emotional challenges. RESEARCH-BASED PRACTICE; SOCIAL JUSTICE; ETHICAL LEADERSHIP; SPA STANDARDS 1, 3, 4, 5, 6, 7, 8, 10

Relationship to Program Goals and Professional Organizations

EDCI 673 is the second course in a two-course sequence of science methods courses for students seeking a secondary school teaching license in earth science, biology, chemistry, or physics. The course builds on students’ knowledge of their subject matter and from their first science methods course. The course focuses on using technology in science teaching and learning and meeting the diverse needs of learners as called for by the *Standards of Learning for Virginia Public Schools* and *National Science Education Standards* and as outlined by the National Council for Accreditation of Teacher Education (NCATE), the National Science Teachers Association (NSTA), and the Interstate New Teacher Assessment and Support Consortium (INTASC). EDCI 673 introduces students to integrating technology in learning and teaching science, adapting inquiry-based lessons, assessment techniques, and the diverse needs of students.

Emergency Procedures

You are encouraged to sign up for emergency alerts by visiting the website https://alert.gmu.edu. There are emergency posters in each classroom explaining what to do in the event of crises. Further information about emergency procedures exists on http://www.gmu.edu/service/cert

IMPORTANT INFORMATION FOR LICENSURE COMPLETION

Student Clinical Practice: Internship Requirements

Testing

Beginning with Spring 2015 internships, all official and passing test scores must be submitted and in the Mason system (i.e. Banner/PatriotWeb) by the internship application deadline. Allow a minimum of six weeks for official test scores to arrive at Mason. Testing too close to the application deadline means scores will not arrive in time and the internship application will not be accepted.

Required tests:

- Praxis Core Academic Skills for Educators Tests (or qualifying substitute)
- VCLA
- Praxis II (Content Knowledge exam in your specific endorsement area)

For details, please check http://cehd.gmu.edu/teacher/test/

Endorsements
Please note that ALL endorsement coursework must be completed, with all transcripts submitted and approved by the CEHD Endorsement Office, prior to the internship application deadline. Since the internship application must be submitted in the semester prior to the actual internship, please make an appointment to meet with the Endorsement Specialist and plan the completion of your Endorsements accordingly.

CPR/AED/First Aid

Beginning with spring 2015 internships, verification that the Emergency First Aid, CPR, and Use of AED Certification or Training requirement must be submitted and in the Mason system (i.e. Banner/PatriotWeb) by the application deadline. Students must submit one of the "acceptable evidence" documents listed at http://cehd.gmu.edu/teacher/emergency-first-aid to CEHD Student and Academic Affairs. In order to have the requirement reflected as met in the Mason system, documents can be scanned/e-mailed to CEHDacad@gmu.edu or dropped-off in Thompson Hall, Suite 2300.

Background Checks/Fingerprints

All local school systems require students to complete a criminal background check through their human resources office (not through George Mason University) **prior to beginning the internship.** Detailed instructions on the process will be sent to the student from either the school system or Mason. Students are **strongly advised** to disclose any/all legal incidents that may appear on their records. The consequence of failing to do so, whether or not such incidents resulted in conviction, is termination of the internship.

Please Note

Your G-Number must be clearly noted (visible and legible) on the face of the document(s) that you submit.

Application

The internship application can be downloaded at http://cehd.gmu.edu/teacher/internships-field-experience

Deadlines

Spring internship application:
- Traditional: September 15
- On-the Job: November 1

Fall internship application:
- Traditional: February 15
- On-the Job: May 1

Sustainability at GMU

George Mason University is focusing on making our community “greener” and reducing the impact on the environment. This course will contribute to this effort in the following ways. I hope that you will create other ways to contribute to this effort.

- Handouts will be available electronically through the Blackboard platform
• You should consider reducing waste in your teaching practice (ex: unnecessary paper) and in developing your work products for this class.
• Incorporate teaching sustainability in the content of your lesson plans (for example, human’s role in reducing their impact on the environment.) Think about what the next generation needs to know about “greening.”

COMMUNICATION

If you would like to get in touch with me, email is the best form (lannetta@gmu.edu). During usual circumstances, turnaround time is 24-36 hours. Please don’t leave a message on my university phone, as the system is relatively unreliable.

COLLEGE EXPECTATIONS AND UNIVERSITY HONOR CODE

The Graduate School of Education (GSE) expects that all students abide by the following:

Students are expected to exhibit professional behavior and dispositions.

Commitment to the profession
 - Promoting exemplary practice
 - Excellence in teaching and learning
 - Advancing the profession
 - Engagement in partnerships

Commitment to honoring professional ethical standards
 - Fairness
 - Honesty
 - Integrity
 - Trustworthiness
 - Confidentiality
 - Respect for colleagues and students

Commitment to key elements of professional practice
 - Belief that all individuals have the potential for growth and learning
 - Persistence in helping individuals succeed
 - High standards
 - Safe and supportive learning environments
 - Systematic planning
 - Intrinsic motivation
 - Reciprocal, active learning
 - Continuous, integrated assessment
 - Critical thinking
 - Thoughtful, responsive listening
 - Active, supportive interactions
 - Technology-supported learning
 - Research-based practice
 - Respect for diverse talents, abilities, and perspectives
Authentic and relevant learning

Commitment to being a member of a learning community
 Professional dialogue
 Self-improvement
 Collective improvement
 Reflective practice
 Responsibility
 Flexibility
 Collaboration

Continuous, lifelong learning

Commitment to democratic values and social justice
 Understanding systemic issues that prevent full participation
 Awareness of practices that sustain unequal treatment or unequal voice
 Advocate for practices that promote equity and access
 Respects the opinion and dignity of others
 Sensitive to community and cultural norms
 Appreciates and integrates multiple perspectives

COLLEGE OF EDUCATION AND HUMAN DEVELOPMENT STATEMENT OF EXPECTATIONS:

All students must abide by the following:

- Students must adhere to the guidelines of the George Mason University Honor Code [See http://academicintegrity.gmu.edu/honorcode/].
- Students with disabilities who seek accommodations in a course must be registered with the George Mason University Office of Disability Services (ODS) and inform their instructor, in writing, at the beginning of the semester [See http://ods.gmu.edu/].
- Students must follow the university policy for Responsible Use of Computing [See http://universitypolicy.gmu.edu/1301gen.html].
- Students are responsible for the content of university communications sent to their George Mason University email account and are required to activate their account and check it regularly. All communication from the university, college, school, and program will be sent to students solely through their Mason email account.
- Students must follow the university policy stating that all sound emitting devices shall be turned off during class unless otherwise authorized by the instructor.
- Students are expected to exhibit professional behaviors and dispositions at all times.

Please note that:
 - "Plagiarism encompasses the following:
 1. Presenting as one's own the words, the work, or the opinions of someone else without proper acknowledgment.
 2. Borrowing the sequence of ideas, the arrangement of material, or the pattern of thought of someone else without proper acknowledgment.”
 (from Mason Honor Code online at http://mason.gmu.edu/~montecin/plagiarism.htm)
 - Paraphrasing involves taking someone else’s ideas and putting them in your own words. When you paraphrase, you need to cite the source.
When material is copied word for word from a source, it is a direct quotation. You must use quotation marks (or block indent the text) and cite the source.

Electronic tools (e.g., SafeAssign) may be used to detect plagiarism if necessary. Plagiarism and other forms of academic misconduct are treated seriously and may result in disciplinary actions.

Students with disabilities who seek accommodations in a course must be registered with the GMU Office of Disability Services (ODS) and inform the instructor, in writing, at the beginning of the semester. See http://www2.gmu.edu/dpt/unilife/ods/ or call 703-993-2474 to access the ODS.

- The George Mason University Counseling and Psychological Services (CAPS) staff consists of professional counseling and clinical psychologists, social workers, and counselors who offer a wide range of services (e.g., individual and group counseling, workshops and outreach programs) to enhance students’ personal experience and academic performance [See http://caps.gmu.edu/].

- The George Mason University Writing Center staff provides a variety of resources and services (e.g., tutoring, workshops, writing guides, handbooks) intended to support students as they work to construct and share knowledge through writing [See http://writingcenter.gmu.edu/].

For additional information on the College of Education and Human Development, Graduate School of Education, please visit our website [See http://gse.gmu.edu/].

Field Experience Signup
The State of Virginia requires a number of hours of field work before you can do your internship. You will acquire 30 of those hours during this class. The university will place you in the field if you are not already teaching. EVERYONE needs to register on the website even if you are teaching, so that GMU has a record of where/when everyone did this 30 hours of field work.
A student will be able to consistently write measurable objectives | Unit Plan
A student will be able to develop assessments aligned with measurable objectives | Unit Plan
A student will be able to design a lesson in which students are actively engaged and follow a student-centered theory | Unit Plan
A student will be able to use assessment data to evaluate student achievement of objectives | Unit Plan, Microteaching Paper
A student will be able to design a lesson in which students will learn characteristics of the nature of science | Unit Plan
A student will be able to examine student achievement of objectives to evaluate and modify their lessons | Peer Teaching Reflection Paper
A student will be able to describe the safety issues and solutions for lessons | Unit Plan
A student will be able to organize curriculum topics to build integrated student knowledge | Unit Plan
A student will be able to effectively incorporate technology into the classroom. | Technology Lessons
A student will be able to differentiate lessons to address the diverse needs of students. | Differentiation Lessons
A student will be able to be reflective about their own teaching and the teaching of others based upon evidence. | Reflection Questions, Peer Teaching Reflection Paper, Field Experience Paper

The website to sign up is http://cehd.gmu.edu/endorse/ferf.

Grading

Since this is a graduate level course, high quality work is expected on all assignments and in class. **Attendance at all classes for the entire class is a course expectation.** Each unapproved absence will result in a grade reduction of 20 points and each two-class lateness will result in a 20-point grade reduction. Each graded assignment will be assessed using a scoring rubric, which will be handed out before the assignment is due. The rubrics are available on the Blackboard website at the beginning of the semester. All assignments are due at the beginning of class on the day they are due. Graded assignments that are late will automatically receive a ten percent grade reduction (one full letter grade lower). Grades are measured as experience points.
(XP). It is possible for everyone to reach level 12 with enough experience points. The notion of quality over quantity is alive and well in this course.

Assignments

<table>
<thead>
<tr>
<th>Assignments</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Avatar</td>
<td>30</td>
</tr>
<tr>
<td>2. Peer Teaching</td>
<td>600</td>
</tr>
<tr>
<td>3. Peer Teaching Report</td>
<td>445</td>
</tr>
<tr>
<td>3. Discrepant Events</td>
<td>300</td>
</tr>
<tr>
<td>4. Field Experience Report</td>
<td>800</td>
</tr>
<tr>
<td>5. Unit Plan</td>
<td></td>
</tr>
<tr>
<td>6. Professionalism</td>
<td>125</td>
</tr>
<tr>
<td>7. Blackboard Class participation/Reflections</td>
<td>700</td>
</tr>
<tr>
<td>8. Class Participation</td>
<td>500</td>
</tr>
</tbody>
</table>

TOTAL POINTS: 6500

Policy on Incompletes

If circumstances warrant, a written request for an incomplete must be provided to the instructor for approval prior to the course final examination date. Requests are accepted at the instructor’s discretion, provided your reasons are justified and that 80% of your work has already been completed. Your written request should be regarded as a contract between you and the instructor and must specify the date for completion of work. This date must be at least two weeks prior to the university deadline for changing incompletes to letter grades.

Grading Scale/Levels

<table>
<thead>
<tr>
<th>Level</th>
<th>XP</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level Twelve</td>
<td>6500</td>
<td>A</td>
</tr>
<tr>
<td>Level Eleven</td>
<td>5500</td>
<td>A-</td>
</tr>
<tr>
<td>Level Ten</td>
<td>4500</td>
<td>B+</td>
</tr>
<tr>
<td>Level Nine</td>
<td>4000</td>
<td>B</td>
</tr>
<tr>
<td>Level Eight</td>
<td>3500</td>
<td>B-</td>
</tr>
<tr>
<td>Level Seven</td>
<td>3000</td>
<td>C+</td>
</tr>
<tr>
<td>Level Six</td>
<td>2500</td>
<td>C</td>
</tr>
<tr>
<td>Level Five</td>
<td>2000</td>
<td>C-</td>
</tr>
<tr>
<td>Level Four</td>
<td>1500</td>
<td>D+</td>
</tr>
<tr>
<td>Level Three</td>
<td>1000</td>
<td>D</td>
</tr>
<tr>
<td>Level Two</td>
<td>500</td>
<td>D-</td>
</tr>
<tr>
<td>Level One</td>
<td>0-499</td>
<td>F</td>
</tr>
</tbody>
</table>

Assignments

Science education research shows that frequent assessment of small amounts of material is most effective for learning science. Therefore, in this class formal and informal assessment
will be continuously provided on assignments and class activities. Assessment is used as a tool for information that informs both learning and teaching, so this two-way communication loop is necessary for optimal learning. ALL assignments will be submitted online through Blackboard. Hardcopies and email submissions will not be accepted. Of critical importance, make each project something that you will actually use in teaching.

Quests:

1. Peer Teaching Lesson

Research shows that the most effective teachers inform their practice by analyzing and reflecting on their teaching. You will also incorporate an assessment (could be during the teaching or after the teaching, such as homework). Your peers will provide feedback on your teaching skills and knowledge and will provide assessment data for you to analyze to further inform practice.

You will implement one technology-based activity and a corresponding assessment (total of ~ 45 minutes) with your peers in class. During the first few minutes of the lesson you will give an **overview** (orally and visually presented) of your lesson plans including standards and rationale for the material you are about to teach. Engage your classmates in **hands-on science** as if they were students at the grade level you teach and administer a **corresponding** (short) **assessment** for the material as if they were students. Be sure to collect the information from this assessment, as it will be a part of your final paper. For the last three minutes, tell the class what **effective science teaching and assessment strategies** (orally and visually presented) you just demonstrated.

2. Unit Plan

The unit plan is one of the gateways for the Secondary Education Program. **You will need to successfully complete this project in order to continue in the GMU degree program.** Your curriculum unit plan will reflect your ability to incorporate practical and theoretical aspects of teaching ranging from pedagogical methods to technology, inquiry, safety, the nature of science, and assessment. The assignment will also assist you in considering the various logistical and management problems that must be overcome in order for the greatest amount of learning to take place in finite amounts of time. This should be a product that you will teach someday!

These learning events/lessons must be connected and integrated, connecting each lesson to the next at the grade level of your choice. **The unit plan is at least 4 weeks (20 hours, ~10 lessons w/ block scheduling).** You may share ideas, materials, and resources with your classmates, but you must write your own lessons for your unit. Safety considerations, pedagogical approach, nature of science, soundness of activities, inclusion of technology(ies) and “connectivity” are a must. You should have your students engaged in hands-on science at least half of the time; including student-centered technology use. Though you will outline a four-week unit plan, you will only fully develop two weeks (10 hours) of daily lesson plans with all support materials. You are to find, adapt, and/or create the activities done by the students. Within your unit you will place developmental prompts based on the nature of science (provided to you) to enhance your students’ knowledge of science as a way of knowing. Your unit should be
developed in sufficient detail (including student and teacher support materials) that you or a substitute teacher could use it to teach from.

Lesson plans must demonstrate that your lessons utilize inquiry. In your plans, you must elaborate on how **students engage in making observations of the natural world, analyzing data, and making meaning from the data.** In addition to creating inquiry lessons, you should identify the **Level of Inquiry** using the following chart.

<table>
<thead>
<tr>
<th>Level of Inquiry</th>
<th>How much information is given to the student?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Confirmation</td>
<td>![Check mark] ![Check mark] ![Check mark]</td>
</tr>
<tr>
<td>2- Structured</td>
<td>![Check mark] ![Check mark]</td>
</tr>
<tr>
<td>3- Guided</td>
<td>![Check mark]</td>
</tr>
<tr>
<td>4- Open</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Four-Level Model of Inquiry (adapted from Bell, Smetana, & Binns, 2005)

All unit plans will include:

a. Overview (3-4 pages using the following headings)

 - **Description of Students**
 In a very brief overview, describe the audience for which the unit is designed.
 - **Theme**
 This is the topic for the unit.
 - **Unit Question**
 This is the guiding question that the students will be investigating about the theme/unit.
 - **Daily Questions**
 Each daily lesson plan will include at least one question for the day. In this section, list out the daily questions in order to show the “connectivity” of the ideas.
 - **Level of Inquiry**
 For each class briefly describe how students are engaging in inquiry by making observations, analyzing data and/or making meaning from the data. Identify the Level of Inquiry (1, 2, 3, or 4) using the table noted above and explain why you have chosen this level.
 - **Philosophy of Science Teaching**
 This is an approximately 250-word description of your rationale for planning the subject matter content and teaching strategies for this unit including supporting research and theory learned through this class.
 - **Nature of Science Prompts**
Use this section to describe the connection of the science content to the aspect of the nature of science (from the 7 aspects) you chose for your unit.

Standards of Learning
List the main standards including their codes from the Virginia Standards of Learning documents.

National Science Education Standards
List the standards from the National Science Education Standards that this unit addresses. Include the code (i.e. Content Standard B.1) for each standard.

Assessment Plan Overview
Summarize the multiple forms of assessment that will be embedded in the unit. Describe how the students’ learning will be assessed both formally (graded) and informally (not graded). Identify the assessments as diagnostic, formative, or summative.

Sustainability
Explain the ways in which you can infuse the idea of reducing negative human impact on the environment in your curriculum. Also explain ways you can incorporate practices that conserve resources into your daily teacher routines.

b. Schedule
Include a one-page overview/list showing the science content being studied each day for four weeks. This could be displayed as a calendar. Indicate the two weeks (10 hours) of lessons you have fully developed with all support materials.

c. Daily Lesson Plans (1 lesson plan for each day for four weeks - see attached format)
Create a series of lesson plans that engage students in making observations, analyzing data and making sense of data and will include daily questions, materials, learning activities including how long each activity will take, and assessment. The daily question should relate to the unit question, the teaching activities should directly address the daily question, and the assessment should interpret student understanding of the daily question. As part of each lesson plan, include key discussion questions that you will ask the students while introducing, discussing, or summarizing concepts. Further, list anticipated misconceptions you might find in your students.

d. Support Materials (all materials for two consecutive weeks of the daily lesson plans)
For at least two consecutive weeks of the daily lesson plans, you will develop all supporting materials that the teacher and students will use. For teaching and learning activities include each sheet of paper distributed to the students to carry out the daily lesson plans - laboratory experiments, activities, worksheets, instructions, assessments, rubrics, etc. Attach these to the appropriate lesson plan. Overhead transparencies (paper copy), PowerPoint slides (on paper) and other teaching aids used during the unit should also be included. Select your two weeks in mind to illustrate the following three types of lessons: introducing new content, hands-on assignments, and assessment of student learning. Each day describe how the students' learning will be assessed both formally (graded) and/or informally (not graded). The assessment activities and how they will be assessed (i.e. rubrics) will be attached to the daily lesson plans.
plans. These activities should focus on the essential science concepts and connections, assess higher order thinking skills, and target different learning styles. Checking for understanding should be included daily. Include diagnostic, formative, and summative assessment. At least one of the days you choose to develop support materials needs to include major assessment instruments and grading criteria for the unit. The unit plan template included on this syllabus will help you account for all of the required components.

e. Technology Infusion Activities

You will design THREE inquiry-based lessons that use varying technology in your science discipline for your students. The lessons you develop are to take advantage of the dynamic nature of the web and computer-based opportunities in and out of school. The purpose of this assignment is to use technology to help your students learn science, not to use the web as a textbook or solely as a research source. The central focus is to be on learning science and not the technology.

Your science lessons should:

1. Follow good lesson design
2. Describe in detail science and technology,
3. Be inquiry-based,
4. Help students understand science concepts,
5. Have both formative and summative assessments
6. Be posted on our class Blackboard site.

THREE of the lessons you design should take approximately 90 minutes for students to complete. Additionally, you will create ONE lesson for a 45-minute class that you will teach as part of the Peer Teaching assignment.

The rubric is based upon the requirements of National Council for Accreditation of Teacher Education (NCATE), the National Science Teachers Association (NSTA), and the Interstate New Teacher Assessment and Support Consortium (INTASC). With your completed unit, include a copy of the rubric on which you have scored yourself. Please submit all Unit Plans electronically. You may need to scan documents to do this but all Unit Plans should be ONE file.

Guild Chats:

1. **Avatar**

You will describe who you are and in 250 words explain how you came to pursue teaching credentials and how your avatar’s personality fits into the group. You will also give your avatar a name.

2. **Class Participation**

Learning depends on the active engagement of the participant and frequent checking by the instructor as to the progress of the learner. Smaller assignments will be given as necessary in class in order to inform your learning and my teaching. Your participation in these assignments
is essential to valuable class discussions and will help to “chunk” the large assignments into smaller, more attainable learning goal. Your classmates depend on your comments to extend their learning. Attendance for each class is necessary – please contact the professor BEFORE any absence. This is especially true in both online and in-class interactions.

Crafting/Gathering:

1. Field Experience Paper

The purpose of the field experience is to provide you with the opportunity to (1) connect to science education theories, concepts and research findings to classroom/school practice of assessments, (2) to study about assessments in a variety of classroom/school communities, and (3) to promote critical, self-reflection about your current and future teaching practice utilizing assessments.

Your field experience should focus on the interaction of assessments and instruction. You are required to observe and log-in a minimum of 30 hours, spread over the semester. During your field experience, you should, in a non-obtrusive way, ask the teachers you visit about their uses of assessments, where they get them, how they are designed, what they do with the information to inform their instruction, and the like. Then observe what you see in the classroom regarding how instruction and assessment are linked. Specifically, you should observe and reflect on the following (forms will be provided for you in Blackboard):

1. Questioning
2. Class Management
3. Instructional Models/Strategies
4. Teaching With Technology
5. Laboratory Safety
6. Assessment (Formative and Summative)
7. Observation of students
8. Student shadowing

At the end of your field experience, you are required to analyze your field notes as well as any other relevant data you collected and prepare a Field Experience Report. Your Field Experience Report must be between 10-15 pages in length. Your report must describe and discuss:

- Background and context of the class(es),
- What information you found from the teacher
- Summary of findings from your observations, and
- Implications for your practice.

2. Peer Teaching Report

This lesson will be video recorded for you. After you teach the lesson, you will review the recording, and write a 6 page paper that describes the teaching and assessment goals you had for the lesson (about 1 page), analyze the lesson in terms of effectiveness of teaching AND the specific outcomes of the assessment (about 3 pages), and reflect on improvements needed and
successful events in both the lesson and the assessment (about 1 page). Finally, devote one page to how you would approach/change the next lesson based on the results of the assessment. That is, how did the outcome of the assessment inform how you would proceed in the instruction?

3. Discrepant Event Demo

A Discrepant Event is something that surprises, startles, puzzles, or astonishes the observer. Often, a discrepant event is one that does not appear to follow basic “rules of nature” and the outcome of a discrepant event is unexpected or contrary to what one would have predicted. The event throws the child "off balance" intellectually which most likely will motivate them to further investigate the science concept. Discrepant events can be used:

- to engage students in inquiry
- as a demonstration followed by discussion to introduce a new topic
- to engage students in science processes skills
- as a small group lab activity
- as a minds-on warm-up to stimulate critical thinking
- as a take home lab activity
- as a challenge for students to create investigative lab activities to find out more about the event

Assignment:

1) Find or develop a discrepant event (See resources below).
2) Be sure that the needed equipment and materials are available.
3) e-mail the instructor a brief description of your discrepant event or a link to its source so it can be approved (we don’t want too many people presenting the same event- the earlier you find one the better the chance it hasn’t already been claimed).
4) Fulfill each of the below Expectations

Expectations:

a) Present a discrepant event (5-10 minutes) in your small group. Present the event to your peers as if you were presenting it to your students. All materials should be ready and brought to class that day. Bring enough material to do your event twice (see Presentation Format section below). I can help procure materials.

c) Create an accompanying document that contains the following:

- A section that outlines the materials needed, time required, target grade level, and links to the VA SOLS
- A summary of the science concepts/content that helps explain your discrepant event (i.e. the background knowledge someone would need).
- A look at of the everyday ideas that students might have regarding the science content central to your event.
- A description of the ways in which your particular discrepant event helps students confront and revise their everyday ideas?
A list of questions that you would use:
 a) to set up the event
 b) during the event
 c) to follow-up or summarize the event

A bibliography of sources or references

This should be brief (2-4 pgs. Typed; 12 pt. font). Bulleted lists and brief paragraphs are fine (i.e. it need not be in prose)

Presentation format:

Each student will present their individual discrepant event in their small group. After everyone has presented the group will discuss the events and choose one (1) to go forward to the next round. During round two each small group’s selection will be presented to the larger group. From these events one will be crowned “Top Discrepant Event”.

Resources:
Below are some web sites that have examples of discrepant events. The library also has various trade books that may have ideas.

http://scifun.chem.wisc.edu/HomeExpts/HOMEEXPTS.HTML

http://www.mcrel.org/whelmers/index.asp

http://www.stevespanglerscience.com/experiments/

http://www.elmhurst.edu/~chm/demos/

http://www.arches.uga.edu/~bcramond/home/DiscrepantEvents.htm

http://pbskids.org/zoom/activities/sci/

http://www.plu.edu/~vedrosr/discrepant.html

Helpful Hints:

Planning a Discrepant Event:
1. Go through the demonstration at least once before class begins.
2. Think carefully about and write out the questions you will ask during the demonstration.
3. Consider the time the demonstration will take (10 minute max.).

Conducting a Discrepant Event:
1. Make it easily visible.
2. Speak loudly enough to be heard in the back of the room.
3. Use dramatic techniques to excite and involve students.
4. Teach inductively, start your demonstration with a question.
5. Allow at least three seconds for students to reply to your questions.
6. If necessary use whiteboard or overhead to explain concepts and/or draw diagrams.
Scoring Rubric

<table>
<thead>
<tr>
<th>Name of the Event</th>
<th>The Event (i.e. did it surprise, startle, puzzle, or astonish the observer; is it appropriate for elementary students)</th>
<th>The Delivery (i.e. poise, enthusiasm, speech, volume)</th>
<th>Explanation of Concept (i.e. scientifically sound, clear, concise, complete)</th>
<th>Comments</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Concept Map – Organization of Ideas</td>
<td>71</td>
<td>September 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Objectives/Assessments</td>
<td>71</td>
<td>September 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesson Plans 1 & 2</td>
<td>71</td>
<td>September 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesson plans 3 & 4</td>
<td>71</td>
<td>October 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differentiated Lesson Plan 1</td>
<td>71</td>
<td>October 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesson Plan Incorporating Technology 1</td>
<td>71</td>
<td>October 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesson Plans 5 & 6</td>
<td>334</td>
<td>October 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Plan Overview</td>
<td>71</td>
<td>October 26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Score each event in each category on a scale of 1 to 10 (10 being the best)!

The following chart is a guideline to follow for assignments with its respective due date and points.

<table>
<thead>
<tr>
<th>Assessments</th>
<th>Points</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Concept Map – Organization of Ideas</td>
<td>71</td>
<td>September 14</td>
</tr>
<tr>
<td>Unit Objectives/Assessments</td>
<td>71</td>
<td>September 14</td>
</tr>
<tr>
<td>Lesson Plans 1 & 2</td>
<td>71</td>
<td>September 28</td>
</tr>
<tr>
<td>Lesson plans 3 & 4</td>
<td>71</td>
<td>October 5</td>
</tr>
<tr>
<td>Differentiated Lesson Plan 1</td>
<td>71</td>
<td>October 12</td>
</tr>
<tr>
<td>Lesson Plan Incorporating Technology 1</td>
<td>71</td>
<td>October 19</td>
</tr>
<tr>
<td>Lesson Plans 5 & 6</td>
<td>334</td>
<td>October 19</td>
</tr>
<tr>
<td>Unit Plan Overview</td>
<td>71</td>
<td>October 26</td>
</tr>
<tr>
<td>Date</td>
<td>Class topics</td>
<td>Readings (due on the listed week)</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>August 31</td>
<td>Overview and expectations of course</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment for Learning and Teaching</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avatar</td>
<td></td>
</tr>
<tr>
<td>September 14</td>
<td>Assessment of Preconceptions</td>
<td>READ: Inside the Teen Brain; Misconceptions</td>
</tr>
<tr>
<td></td>
<td>Formative and Summative Assessments and Reteaching Concepts</td>
<td></td>
</tr>
<tr>
<td>September 21</td>
<td>Lesson design and interconnectivity of lessons to form a unit</td>
<td>READ: NCREL Assessment</td>
</tr>
<tr>
<td>September 28</td>
<td>No class-Out in Schools [observe instructional models/strategies/student shadowing]</td>
<td>READ: Embedded Assessment</td>
</tr>
<tr>
<td>October 5</td>
<td>Technology</td>
<td>READ: Active Learning</td>
</tr>
<tr>
<td></td>
<td>• Serious Educational Games</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Activity</td>
<td>Reading</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>October 12</td>
<td>Informal Education</td>
<td>READ: Smetna & Bell; Annetta</td>
</tr>
<tr>
<td>October 19</td>
<td>Differentiation – Planning, Implementation and Grading</td>
<td></td>
</tr>
<tr>
<td>October 26</td>
<td>Openers/Data analysis from assessments/Confidence weighting</td>
<td>READ: 4 articles on Classroom management</td>
</tr>
<tr>
<td>November 2</td>
<td>Online Teaching (in Blackboard Collaborate)</td>
<td>READ: Differentiating Instruction</td>
</tr>
<tr>
<td>November 9</td>
<td>Discrepant Event Dems</td>
<td>READ: Warm-ups, PBL</td>
</tr>
<tr>
<td>November 16</td>
<td>Peer teaching experiences</td>
<td>READ: Intelligent Teaching</td>
</tr>
<tr>
<td>November 30</td>
<td>Peer teaching experiences</td>
<td>READ: Art of Asking Questions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>READ: Implementing the Learning Cycle</td>
</tr>
<tr>
<td>December 7</td>
<td>Peer teaching experiences</td>
<td>READ: Active Learning</td>
</tr>
<tr>
<td>December 14</td>
<td>Peer teaching experiences</td>
<td>READ: Effective Teaching and Learning</td>
</tr>
<tr>
<td>December 21</td>
<td>Field Experience Presentations</td>
<td></td>
</tr>
</tbody>
</table>

“Education is not a preparation for life; education is life itself.” - John Dewey

“It is impossible to deny that science has played a major part in determining the nature of the modern world. The food we eat, the clothes we wear, the means of transportation that we in going from place to place, the medicines that keep us well, the weapons we use in killing each other have been changed in recent years through scientific discovery. It may well be contended that the world is now in a dangerous situation because science and its application has developed faster than the understanding of the average citizen. It is evidently of great importance to attempt to improve this situation through a program of education of the citizen…The citizen must have knowledge enough of the world to make the right decisions; and in the modern world this means that the citizen must have a significant understanding of science.” Linus Pauling (1951).
George Mason University
College of Education and Human Development
Secondary Education Program

Unit Plan – Science Assessment Rubric

Name ___________________________ Date __________ Major Discipline __________ within Science

This science rubric is supplemental to the Secondary Education Program’s Unit Plan—General Evaluation Rubric. These guidelines and rubric describe the planning performance standards in the College of Education and Human Development at George Mason University that secondary school pre-service teachers need to meet before proceeding to the internship/student teaching.
During the Science methods course for Teaching in the Secondary School (EDCI 573), each pre-service teacher will develop a two- to-four week unit plan for teaching. Two rubrics will be used to assess planning: a general rubric and this subject specific rubric.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Unsatisfactory</th>
<th>Acceptable</th>
<th>Target</th>
<th>Accomplished</th>
</tr>
</thead>
</table>

Unit Plan Rubric
<p>| 1a – Understand and can successfully convey to students the major concepts, principles, theories, laws, and interrelationships of their fields of licensure and supporting fields as recommended by the National Science Teachers Association; | Objectives for the unit do not appropriately identify the major concepts, principles, theories, laws associated with the unit as identified by the NSTA standards OR Activities and lessons are not clear, consistent, and coherent, connected to identified objectives AND Activities and lessons are not connected to one another potentially leading to isolated knowledge | Objectives for the unit clearly identify the major concepts, principles, theories, laws associated with the unit as identified by the NSTA standards AND Activities and lessons are clear, consistent, and coherent, connecting to identified objectives BUT Few activities and lessons are connected to one another potentially leading to isolated knowledge | Objectives for the unit clearly identify the major concepts, principles, theories, laws associated with the unit as identified by the NSTA standards AND Activities and lessons are clear, consistent, and coherent, connecting to identified objectives BUT A majority of the activities and lessons are connected to one another allowing | Objectives for the unit clearly identify the major concepts, principles, theories, laws associated with the unit as identified by the NSTA standards AND Activities and lessons are clear, consistent, and coherent, connecting to identified objectives BUT A majority of the activities and lessons are connected to one another allowing students to develop a depth and breadth of knowledge within the discipline |</p>
<table>
<thead>
<tr>
<th>Standard</th>
<th>Unsatisfactory</th>
<th>Acceptable</th>
<th>Target</th>
<th>Accomplished</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b – Understand and can successfully convey to students the unifying concepts of science delineated by the National Science Education Standards;</td>
<td>Objectives for the unit do not include the unifying concepts identified by the NSTA standards OR Activities and lessons are not connected to identified objectives</td>
<td>Objectives for the unit include the unifying concepts identified by the NSTA standards AND Activities and lessons are clear, consistent, and coherent, connecting to identified objectives</td>
<td>Objectives for the unit include the unifying concepts identified by the NSTA standards AND Activities and lessons are clear, consistent, and coherent, connecting to identified objectives</td>
<td>Objectives for the unit include the unifying concepts identified by the NSTA standards AND Activities and lessons are clear, consistent, and coherent, connecting to identified objectives</td>
</tr>
</tbody>
</table>
1c – Understand and can successfully convey to students important personal and technological applications of science in their fields of licensure;

<table>
<thead>
<tr>
<th>Standard</th>
<th>Unsatisfactory</th>
<th>Acceptable</th>
<th>Target</th>
<th>Accomplished</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities and lessons do not have students recognize personal and technological applications of science related to the concepts being taught</td>
<td>Activities and lessons describe to students personal and technological applications of science related to the concepts being taught</td>
<td>Activities and lessons have students identifying personal and technological applications of science related to the concepts being taught</td>
<td>Activities and lessons are developed around the theme of personal and technological applications of science related to the concepts being taught</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>Unsatisfactory</td>
<td>Acceptable</td>
<td>Target</td>
<td>Accomplished</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>2a –</td>
<td>Activities and lessons do not include historical and cultural developments related to the concepts being learned</td>
<td>Activities and lessons include 1-2 historical and cultural developments related to the concepts being learned</td>
<td>Activities and lessons include multiple historical and cultural developments related to the concepts being learned as a separate concept</td>
<td>Activities and lessons integrate multiple historical and cultural developments related to the concepts being learned</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Unsatisfactory</th>
<th>Acceptable</th>
<th>Target</th>
<th>Accomplished</th>
</tr>
</thead>
<tbody>
<tr>
<td>2b –</td>
<td>Activities and lessons do not have students recognize personal and technological applications of science related to the concepts being taught</td>
<td>Activities and lessons describe to students RELEVANT personal and technological applications of science related to the concepts being taught</td>
<td>Activities and lessons require students to identify RELEVANT personal and technological applications of science related to the concepts being taught</td>
<td>Activities and lessons are centered around concepts that emphasize personal and technological applications of science</td>
</tr>
</tbody>
</table>
2c – engage students successfully in studies of the nature of science including, when possible, the critical analysis of false or doubtful assertions made in the name of science

<table>
<thead>
<tr>
<th>Standard</th>
<th>Unsatisfactory</th>
<th>Acceptable</th>
<th>Target</th>
<th>Accomplished</th>
</tr>
</thead>
<tbody>
<tr>
<td>3b – engage students successfully in studies of the nature of science including, when possible, the critical analysis of false or doubtful assertions made in the name of science</td>
<td>Activities and lessons do not include any opportunities to engage in learning using the process of science or examine hypotheses and theories using evidence</td>
<td>At least two activities and lessons include at least two lessons that provide opportunities to engage in learning using the process of science or examine hypotheses and theories using evidence</td>
<td>Many activities and lessons provide opportunities to engage in learning using the process of science or examine hypotheses and theories using evidence</td>
<td>The unit is developed around providing opportunities to engage in learning using the process of science or examine hypotheses and theories using evidence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Unsatisfactory</th>
<th>Acceptable</th>
<th>Target</th>
<th>Accomplished</th>
</tr>
</thead>
</table>

EDCI 673 Syllabus ▶ Annetta ▶ Fall 2015
4a – Understand socially important issues related to science and technology in their field of licensure, as well as processes used to analyze and make decisions on such issues.

<p>| Activities and lessons do not have students recognize personal and technological applications of science related to the concepts being taught | OR | Activities and lessons describe to students personal and technological applications of science related to the concepts being taught AND Activities and lessons describe to students socially important issues science related to the concepts being taught including examination of risks, costs, and benefits of alternative solutions | AND | Activities and lessons require students to identify personal and technological applications of science related to the concepts being taught AND Activities and lessons require students to identify socially important issues science related to the concepts being taught including examination of risks, costs, and benefits of alternative solutions | OR | Activities and lessons require students to identify personal and technological applications of science related to the concepts being taught AND Activities and lessons require students to identify socially important issues science related to the concepts being taught including examination of risks, costs, and benefits of alternative solutions | AND | Activities and lessons require students to identify personal and technological applications of science related to the concepts being taught AND Activities and lessons require students to identify socially important issues science related to the concepts being taught including examination of risks, costs, and benefits of alternative solutions |</p>
<table>
<thead>
<tr>
<th>Standard</th>
<th>Unsatisfactory</th>
<th>Acceptable</th>
<th>Target</th>
<th>Accomplished</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b – Engage students successfully in the analysis of problems, including considerations of risks, costs, and benefits of alternative solutions; relating these to the knowledge, goals and values of the students.</td>
<td>No examples of activities where students analyze problems</td>
<td>Teacher describes and demonstrates analysis of problems, including risks, costs, and benefits of alternatives solutions</td>
<td>Student analyze problems, including risks, costs and benefits of alternative solutions with guidance from the teacher</td>
<td>Students identify problems and conduct analysis, including risks, costs and benefits of alternative solutions independently</td>
</tr>
<tr>
<td>6a – Understand the curricular recommendations of the National Science Education Standards, and can identify, access, and/or create resources and activities for science education that are consistent with the standards;</td>
<td>Does not include curricular suggestions of NSES</td>
<td>The overall unit includes 1-2 resources (either original or identified from other sources) that align with curricular suggestions of NSES</td>
<td>The overall unit includes multiple resources (either original or identified from other sources) that align with curricular suggestions of NSES</td>
<td>All lesson in the overall unit (either original or identified from other sources) are aligned with curricular suggestions of NSES</td>
</tr>
<tr>
<td>Standard</td>
<td>Unsatisfactory</td>
<td>Acceptable</td>
<td>Target</td>
<td>Accomplished</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>6b – Plan and implement internally consistent units of study that address the diverse goals of the National Science Education Standards and the needs and abilities of students.</td>
<td>Does not include differentiated lessons</td>
<td>The overall unit includes 1-2 lessons (either original or identified from other sources) that are differentiated</td>
<td>The overall unit includes multiple lessons (either original or identified from other sources) that are differentiated</td>
<td>All lesson in the overall unit (either original or identified from other sources) are differentiated</td>
</tr>
<tr>
<td>7a – Identify ways to relate science to the community, involve stakeholders, and use community resources to promote the learning of science.</td>
<td>The unit does not engage students with the ways science relates to the community</td>
<td>Within the unit, the teacher identifies ways in which the students can use the science they are learning to engage with the community</td>
<td>Within in the unit, students identify ways in which they can use the science they are learning to engage with the community and implement with guidance of the teacher</td>
<td>Within in the unit, students identify ways in which they can use the science they are learning to engage with the community and implement independently</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Unsatisfactory</th>
<th>Acceptable</th>
<th>Target</th>
<th>Accomplished</th>
</tr>
</thead>
</table>

EDCI 673 Syllabus ☐ Annetta ☐ Fall 2015
7b – Involve students successfully in activities that relate science to resources and stakeholders in the community or to the resolution of issues important to the community.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Unsatisfactory</th>
<th>Acceptable</th>
<th>Target</th>
<th>Accomplished</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a – Use multiple assessment tools and strategies to achieve important goals for instruction that are aligned with methods of instruction and the needs of students;</td>
<td>Assessment tools are not varied AND Assessment tools do not evaluate objectives identified for the lesson</td>
<td>Assessment tools are primarily summative and not varied BUT Assessment tools evaluate objectives identified for the lesson</td>
<td>Assessment tools include formative and summative AND Assessment tools are varied AND Assessment tools evaluate objectives identified for the lesson</td>
<td>Assessment tools include diagnostic, formative, and summative AND Assessment tools are varied AND Assessment tools evaluate objectives identified for the lesson</td>
</tr>
<tr>
<td>Standard</td>
<td>Unsatisfactory</td>
<td>Acceptable</td>
<td>Target</td>
<td>Accomplished</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>9b – Know and practice safe and proper techniques for the preparation, storage, dispensing, supervision, and disposal of all materials used in science instruction</td>
<td>Either does not include the preparation, storage, dispensing, supervision and disposal of the materials relevant to the case OR does so inaccurately</td>
<td>Identifies some applicable preparation, storage, dispensing supervision and disposal of relevant materials for the class</td>
<td>Identifies and implements main preparation, storage, dispensing supervision and disposal of relevant materials for the class</td>
<td>Identifies and implements main preparation, storage, dispensing supervision and disposal of relevant materials for the class</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Unsatisfactory</th>
<th>Acceptable</th>
<th>Target</th>
<th>Accomplished</th>
</tr>
</thead>
<tbody>
<tr>
<td>9c – Know and follow emergency procedures, maintain safety equipment, and ensure safety procedures appropriate for the activities and the abilities of students;</td>
<td>Either does not include safety procedures in lessons</td>
<td>Identifies potential safety threats in lesson</td>
<td>Identifies potential safety threats in lesson, identifies management strategies to minimize risks, and includes appropriate emergency procedures to address any situations</td>
<td>Identifies potential safety threats in lesson, identifies management strategies to minimize risks, and includes appropriate emergency procedures to address any situations</td>
</tr>
</tbody>
</table>

EDCI 673 Syllabus ▪ Annetta ▪ Fall 2015
Treat all living organisms used in the classroom or found in the field in a safe, humane, and ethical manner and respect legal restrictions on their collection, keeping, and use.

| Either does not include safe and ethical practices associated with living organisms relevant to the case OR does so inaccurately | Identifies some applicable safe and ethical practices associated with living organisms including humane and ethical treatment, safety (both human and of the living organism), husbandry or disposal relevant to the case | Identifies main safe and ethical practices associated with living organisms including humane and ethical treatment, safety (both human and of the living organism), husbandry or disposal relevant to the case AND Addresses proper safe and ethical practices associated with living organisms that should be followed. | Identifies and analyzes main safe and ethical practices associated with living organisms including humane and ethical treatment, safety (both human and of the living organism), husbandry or disposal relevant to the case. AND Addresses proper safe and ethical practices associated with living organisms that should be followed. |