Welcome to the spring edition of the Study- ing and Self-Regulated Learning SIG newsletter. As most of you are keenly aware, we are rapidly approaching the 2012 annual meeting. This almost always means that we are busy preparing papers, presentations, and posters. We hope that your preparations are going well and we look forward to a solid turnout at this year’s annual meeting.

We would like to take a moment to thank each of our officers for their hard work over the past year. First, Daniel Moos is our research awards coordinator. Thanks to Dan we increased our submissions to the graduate student research award and, under Dan’s leadership we will be able to present three awards this year. Each student will receive $250.00 to assist them in their research projects. Great job Dan!

Our secretary/newsletter editors this year are Maria DiBenedetto and Marie White, and the copyeditor is Erin White. Thank you for organizing and coordinating what we consider to be our most informative, impressive and best newsletters yet. It has been a remarkable year on the newsletter front and Erin has done an outstanding job as copyeditor. You have put us in a position to have a very meaningful newsletter.

If your membership lapsed this year you were likely contacted by either Tony Artino or Peggy Chen. They have spent the last year tirelessly solidifying and growing our membership. Thanks to them, we are happy to report that our membership continues to grow. Thanks to both of you.

Our program chairs for the 2012 annual meeting are Tim Cleary and Jill Salisbury-Glennon. They put together a fantastic program. In addition to our business meeting scheduled for Sunday night, we have several sessions. Our submissions were very solid this year and the two of you did a superb job of organizing a very strong set of papers and posters. Be sure to check them out everyone. Dr. Mimi Bong, a professor at the University of Korea will be the speaker during the business meeting. Dr. Bong will discuss her research on self-regulation and self-efficacy.

We also have several others members who have been particularly helpful this year. Thank you to Taylor W. Acee for his hard work on our new proposed poster award; Teya Rutherford for her leadership on the migration of the SIG website to the AERA page (also, watch for our new Facebook page and Twitter account). We also have a new Graduate Student Committee in which Teya Rutherford serves as the student chair and Dr. Erin Peters serves as the faculty advisor.

In particular, we would like to thank Rick King, a professor at Hartford University, for his many years of service to the SIG as our webmaster. We are appreciative and thank you. During the business meeting, we will honor him for the many years he has served our SIG in many capacities.

We would like to also thank each of our nominated members. Your willingness to serve is what makes the SSRL SIG such a special organization. I wish all of you the best. I congratulate those of you who won your elections and I ask those of you were not elected will consider serving in other capacities for the SIG. Feel free to contact us if we can be of assistance.

Finally, I want to take a moment to thank each of our members. We are nothing without you. With your help we are continuing to grow and we have a bright future.

Over the next months, we ask each of you to invite just one person into the SIG. Let’s all work to make the Studying and Self-Regulated Learning SIG grow and thrive.

In conclusion, we look forward to seeing you all in Vancouver. Please remember to attend our business meeting scheduled for Sunday night (April 15) at 6:15 in the Vancouver Convention Center, Floor Second Level - East Room 19 & 20. If you have any questions, please do not hesitate to contact us. Thank you and safe travels.

Sincerely,
Héfer Bembenutty, Senior SIG Chair & Douglas Kaufman, Junior SIG Chair
SIG Chairs

Welcome to our spring newsletter themed: Technology and Studying and Self-Regulated Learning. We would like to thank the contributors who have taken time out of their busy schedules to prepare columns rich in information for our our members. The first article written by Dr. Roger Azevedo describes an exciting project that he and colleagues from McGraw Hill University, the Illinois Institute of Technology, and the University of Memphis have received funding for by the National Science Foundation. Their project is to design, develop, and test MetaTutor - a tool used for both research and self-regulated learning processes. The next article by Dr. Anastasia Kitsantas and Dr. Nada Dabbagh describes the various ways in which using Integrative Learning Technologies such as discussion boards, the Internet, and other Web tools can support teaching, learning and self-regulation. Dr. Vivek Venkatesh and Dr. Philip C. Abrami both introduce hot topics in higher education – that of electronic portfolios and Topic Maps.

We are proud to follow these columns with an interview of Dr. Zimmerman on the 2008 American Educational Research Journal article “Investigating self-regulated learning.

http://uhaweb.hartford.edu/ssrl/
and motivation” by Dr. Zimmerman, which was identified by Science-Watch (2011) as the most cited article in a social science section during the last two years; and an interview with our outstanding chair and exemplary leader of our SIG, Dr. Héfer Bembenutty.

As in our previous newsletter, we have included a book review by Dr. Héfer Bembenutty; this one on Learning to Learn with Integrative Learning Technologies: A Practical Guide for Academic Success by Anastasia Kitsantas and Nada Dabbagh. New to this issue is a Teacher’s Corner where we have a beautiful collage created by art teacher Mr. John Riveaux depicting the association between self-regulated learning and technology, followed by a description by foreign language teacher, Ms. Maria Aguire, on how she links technology and studying and self-regulated learning in her classroom.

Anastasia Kitsantas and Nada Dabbagh. New to this issue is a Teacher’s Corner where we have a beautiful collage created by art teacher Mr. John Riveaux depicting the association between self-regulated learning and technology, followed by a description by foreign language teacher, Ms. Maria Aguire, on how she links technology and studying and self-regulated learning in her classroom.

MetaTutor: An adaptive Multi-Agent Learning Environment to Convey and Assess Self-Regulated Learning by Dr. Roger Azevedo, McGill University

The ubiquity of advanced learning technologies (ALTs) poses numerous challenges for learners. Learning with these non-linear, multi-representational, open-ended learning environments typically involves the use of numerous self-regulatory processes such as planning, reflection, and metacognitive monitoring and regulation. Unfortunately, learners do not always monitor and regulate these processes during learning with ALTs, which limits these environments’ potential and effectiveness as educational tools to enhance learning about complex and challenging topics and domains. Metacognition and self-regulation comprise a set of key processes that are critical for learning about conceptually rich domains with ALTs such as open-ended hypermedia environments, multi-agent tutoring systems, serious games, and other hybrid systems. We emphasize that learning with ALTs involves a complex set of interactions between cognitive, metacognitive, motivational, and affective processes.

Current interdisciplinary research provides evidence that learners of all ages struggle when learning about these conceptually rich domains with ALTs. To briefly summarize, this research indicates that learning about conceptually rich domains with ALTs is particularly difficult because it requires students to monitor and regulate several aspects of their learning. For example, regulating one’s learning involves: analyzing the learning context; setting and managing meaningful learning goals; determining which learning and problem solving strategies to use; assessing whether the strategies are effective in meeting the learning goals; monitoring and making accurate judgments regarding one’s emerging understanding of the topic and contextual factors; and determining whether there are aspects of the learning context that could be used to facilitate learning. During self-regulated learning, students need to deploy several metacognitive processes to determine whether they understand what they are learning.

Furthermore, students must also consider whether it is necessary for them to modify their plans, goals, strategies, and efforts in relation to dynamically changing contextual conditions. Students must also monitor, modify, and adapt to fluctuations in their motivational and affective states, and determine how much social support (if any) they may need to perform a task. Depending on the learning context, instructional goals, perceived task performance, and progress made towards achieving the learning goal(s), they may need to modify certain aspects of their cognition, metacognition, motivation, and affect. As such, we argue that the metacognition and self-regulation play a critical role in learning with ALTs.

A team of interdisciplinary researchers led by Dr. Azevedo and colleagues at McGill University, the Illinois Institute of Technology, and the University of Memphis has been funded by the National Science Foundation to design, develop, and test MetaTutor. MetaTutor is both (1) a research tool used to collect trace data on students’ cognitive, metacognitive, affective, and motivational processes deployed during learning, and (2) a learning tool designed to teach and train students to self-regulate (e.g., by modeling and scaffolding metacognitive monitoring and the use of effective learning strategies, setting and coordinating relevant learning goals).

MetaTutor is a multi-agent, adaptive hypermedia learning environment, which presents challenging human biology science content. The primary goal underlying this environment is to investigate how ALTs can adaptively scaffold SRL and metacognition within the context of learning about complex biological content. MetaTutor is grounded in a theory of SRL that views learning as an active, constructive process whereby learners set goals for their learning and then attempt to monitor, regulate, and control their cognitive and metacognitive processes in the service of those goals. More specifically, MetaTutor is based on several theoretical assumptions of SRL that emphasize the role of cognitive, metacognitive (where metacognition is conceptualized as being subsumed under SRL), motivational, and affective processes. Moreover, learners must regulate their cognitive and metacognitive processes in order to integrate multiple informational representations available from the system. While all students have the potential to regulate, few students do so effectively, possibly due to inefficient or a lack of cognitive or metacognitive strategies, knowledge or control.

As a research tool, MetaTutor is capable of measuring the deployment of self-regulatory processes by allowing our team members and collaborators to collect rich, multi-stream data, including: self-report measures of SRL, on-line measures of cognitive and metacognitive processes (e.g., concurrent think-louds), dialogues relations regarding agent-student interactions, natural language processing of help-seeking behavior, physiological measures of motivation and emotions, emerging patterns of effective problem solving behaviors and strategies, facial data on both basic (e.g., anger) and learning-centered emotions (e.g., boredom), and eye-tracking data regarding the selection, organization and integration of multiple representa-
MetaTutor: An adaptive Multi-Agent Learning Environment to Convey and Assess Self-Regulated Learning (continued)

The design layout also supports SRL processes. As depicted in Figure 1, an embedded palette provides the opportunity for students to initiate an interaction with the system according to the SRL process selected (e.g., take notes). Overall, in line with its theoretical foundations, MetaTutor supports and fosters a variety of SRL behaviors including prior knowledge activation, goal setting, evaluation of learning strategies, integrating information across representations, content evaluation, summarization, note-taking, and drawing. Importantly, it also scaffolds specific metacognitive processes such as judgments of learning, feelings of knowing, and monitoring progress towards goals.

Yet there are some aspects of the espoused theoretical models of SRL yet to be implemented. Initially, the theoretical and empirical foci have been on cognitive, metacognitive, and behavioral learning processes. Thus, this ALT does not extensively incorporate the motivational and affective dimensions of SRL into its design. Moving forward, the varieties and regulation of learners’ affective processes, the affective qualities of human-agent interaction, and how the system and learners’ self-regulation influence the activation, awareness, and protection of motivation will be areas of interest with important implications for SRL theory and instructional design.

Currently, the MetaTutor architecture and framework have been used to design other multi-agent systems for breast cancer patient education, training university faculty to foster metacognition in college students, examining the role of conceptual change and students’ affect in science learning, and building simulation environments to train middle-school students to use metacognitive monitoring and control processes. These projects involve interdisciplinary collaborators across Canada, the US, Europe, and Australia. For more information on the MetaTutor system and other projects please contact Dr. Azevedo (roger.azevedo@mcgill.ca).

Supporting Student Self-Regulated Learning with Integrative Learning Technologies
by Anastasia Kitsantas and Nada Dabbagh, George Mason University

College faculty are increasingly using Integrative Learning Technologies (ILT) to support not only teaching and learning in higher education but also student self-regulation (Kitsantas & Dabbagh, 2010). Self-regulation refers to the processes of activating and sustaining cognitions, behaviors, and affects in order to attain specific goals (Zimmerman & Schunk, 2011).

Considerable research on self-regulated learning shows that processes such as goal setting, self-monitoring, and self-evaluation enhance student learning and performance as well as a variety of affective outcomes (Zimmerman & Kitsantas, 2005; Zimmerman, 2008). Students need both opportunities to practice and social support to develop their self-regulatory skills. Although, several instructional models exist on how to teach students to become self-regulated learners in traditional classroom contexts, more research is needed on how ILT can be utilized in online learning settings to assist students in taking responsibility of their own learning.

ILT, defined as a dynamic collection or aggregation of Web tools, software applications, and mobile technologies that integrate technological and pedagogical features of the Internet and the Web can significantly enhance students’ ability to engage in self-regulated learning. ILT include traditional learning technologies such as Learning Management Systems (LMS) (e.g., Blackboard) as well as emerging technologies such as social media (e.g., social networking sites, blogs, and wikis) and virtual worlds (e.g., Second Life). College faculty can use ILT to prepare strategic, systematic, goal-oriented instruction that guides and supports student learning during independent practice.

There are many tools embedded within LMS that college faculty can use to support processes of self-regulated learning. These include Calendar, Discussion Boards, Tasks, Glossary and My Grades. For example, faculty can support goal setting and self-monitoring by demonstrating to students how to use the Tasks and Calendar tools to set specific and realistic learning goals and keep track of their progress on achieving these goals. Specifically, faculty can create a weekly goal setting template specific to the course objectives and requirements using the LMS Tasks tool so that students can use it as a checklist to create their own short term goals using the LMS Tasks tool. Faculty can also use the Calendar tool to create a daily, weekly, and monthly calendar of course events, activities, and assignments to encourage students to create a personalized calendar to keep track of their progress on achieving their learning goals.

ILT can also enable faculty to use a wide range of traditional and emerging technologies to direct students towards developing and managing a Personal Learning Environment (PLE). PLEs which con-
Supporting Student Self-Regulated Learning with Integrative Learning Technologies (continued)

integrating formal and informal learning and fostering self-regulated learning in higher education contexts (Dabbagh & Kitsantas, 2012). Specifically, PLEs require the development and application of self-regulated learning skills because PLEs are built bottom-up starting with personal goals, information management, and individual knowledge construction, and progressing to socially mediated knowledge and networked learning.

To assist higher education faculty and instructors in scaffolding student self-regulation skills in the creation of PLEs we developed a pedagogical framework for social media use based on the levels of interactivity that social media tools enable. These levels are: (1) personal information management, (2) social interaction and collaboration, and (3) information aggregation and management. For example, at level 1, faculty can demonstrate to students how to use a wiki, which is a website that supports collaborative editing, as a personal space for content organization and management. At this level social media is used to scaffold the cognitive processes that the learner undertakes prior to initiating a learning task such as goal setting and time management. At level 2, faculty can demonstrate to students how to enable the wiki’s collaborative editing and commenting features to foster participation and feedback from the instructor and peers. This prompts students to incorporate the strategies needed to actually perform the learning task and keep track of their progress. And finally, at level 3, faculty can demonstrate to students how to view a wiki’s history to promote self-reflection of their learning across time in order to make adjustments to the PLE.

Although using ILT to foster student self-regulation can be a time-consuming task for the first time user, once students are provided with clear instructional goals and effective strategies and the tools and the assignments are aligned, efforts can be directed towards reflecting and revising based on student feedback. Universities offer several workshops particularly on the use of LMS and faculty can help their students become familiar with these tools. Professional development workshops should also be offered for faculty on how they can use ILT for self-regulated learning, including modeling content related strategies, helping students to set appropriate goals, and to engage in self-observation, and self-reflection.

In closing, given that self-regulation is critical in online learning due to the physical absence of the instructor, ILT can assist faculty in developing instructional models and practices that support strategic learning and in replicating what is most valued in face-to-face instruction particularly those instructional events that help students become successful and independent learners.

References

Academic Self-Regulation In Online Learning Environments: Research on Electronic Portfolios and Topic Maps Indexing Tools

By Vivek Venkatesh and Philip C. Abrami, Concordia University, Montreal, Quebec—Canada

This article presents empirical research projects that explore the development of academic self-regulatory processes in two types of online learning environments, namely, electronic portfolios (EPs) and digital repositories indexed by Topic Maps technology.

EPs have three broad purposes: process, showcase, and assessment. Our emphasis is on EPs used as process portfolios to support how users learn through embedded structures and strategies. Process portfolios are personal learning management tools meant to encourage academic improvement, personal growth and development, and a commitment to life-long learning.

The Centre for the Study of Learning and Performance (CSLP) has developed, tested, and disseminated to Canadian schools in Quebec and Alberta, without charge, an Electronic Portfolio Encouraging Active and Reflective Learning (ePEARL). ePEARL (Abrami et al., 2008) is designed to be faithful to predominant models of self-regulated learning (SRL; e.g., Zimmerman, 2008), scaffolding and supporting learners and their educators from grade one through grade twelve and beyond (see http://grover.concordia.ca/epearl/promo/en/index.php for a demonstration version).

Developed in PHP using a MySQL database, four developmentally-appropriate levels of ePEARL have been designed for use in early elementary (Level 1), late elementary (Level 2), and secondary schools (Level 3) as well as for teachers and adult learners, especially pre-service teachers (Level 4). Features available include: personalizing the portfolio; setting general or task-specific goals; creating new work via a text editor and/or recorder, or linking to work created elsewhere; reflecting on work; sharing work; obtaining feedback from teachers, peers and parents; evaluating personal motivation; editing work and saving revisions as a new version; and sending work to a presentation portfolio for archiving and exporting. ePEARL also contains a rich collection of video vignettes to assist students and teachers to understand and use both the tool and the SRL processes ePEARL is designed to strengthen.

http://uhaweb.hartford.edu/ssrl/
Academic Self-Regulation in Online Learning Environments: Research on Electronic Portfolios and Topic Maps Indexing Tools (continued)

In a series of studies, we have explored the impact of ePEARL on the development of students’ SRL skills and literacy skills, while simultaneously researching classroom implementation fidelity and teacher professional development. In separate quasi-experiments and mixed methodology studies (e.g., Meyer et al. 2010; 2011), we have established the positive impact of ePEARL on students’ SRL skills and literacy skills using a standardized measure of achievement (e.g., Canadian Achievement Test, 4th edition). We have also shown increases in the use and teaching of SRL skills by teachers.

To ensure adoption of technology-based knowledge tools like ePEARL that promote SRL, these software must be structured and designed to increase both the efficiency and effectiveness of learning. In addition, students and teachers may need more guidance about when to use the tool and not only whether to use it; the tool should be used when a learning task is both difficult and important. Like any tool, physical or cognitive, users need to practice to use the tool well and wisely. Finally, cognitive tools and learning strategies may work best when they are an integral part of a course or program of study and not an add-on.

Elsewhere at the CSLP, we have been investigating the intersection between theories of SRL and those of cognitive information retrieval. Our research program explores learner metacognition and task understanding as SRL processes within the framework of information retrieval environments equipped with a powerful, open-source indexing technology called Topic Maps (Venkatesh et al., 2010).

Topic Maps are a form of indexing that describe an ontology, i.e., the relationships between concepts within a domain of knowledge, and link elements of this ontology to descriptive resources. Topic Maps are malleable - the concept and relationship creation process is dynamic and user-driven. In addition, Topic Maps are scalable and can hence be conjoined and merged. Perhaps, most impressively, Topic Maps provide a distinct separation between resources and concepts, thereby facilitating migration of the data models therein.

In a quantitative exploration (Venkatesh & Shaikh, 2011), we have used a novel methodological approach called intra-sample statistical analysis (Shaffer & Serlin, 2004) to reveal the complex relationships between task understanding, metacognitive monitoring and academic performance in graduate learners tackling writing tasks in an online learning environment equipped with a Topic Maps index. Shifting from learner to work task as unit of analysis provided us with a unique lens to describe how learners strategically adapt their self-regulatory processes while navigating this repository. Qualitatively-oriented inductive content analyses of interview data and trace files show how learners’ metacognitive monitoring abilities are dependent on specific navigation experiences in the repository (Venkatesh & Shaikh, 2008). In addition, our results offer explanations for some counter-theoretical phenomena, including why improved task understanding or metacognitive monitoring capabilities do not necessarily lead to improved academic performance.

While it has been established in cognitive psychological terms that learner task understanding is a crucial component of academic self-regulation, our work offers specific suggestions as to how individual components of task understanding can be ameliorated when learners are tackling ill-structured writing tasks using online information repositories. For example, learners adjusted their perceptions of the rationale for completing the essay task and the assessment criteria using various resources, including the instructor’s feedback on their essays, class discussions, the course outline and the instructor’s annotations to other learners’ writings. In the case of graduate learners navigating large corpora, our research reveals an academic self-regulatory mechanism that enables learners to employ distinct strategies to ensure that they have understood the criteria in the same ways as the instructor.

References

http://unawebo.naruto.edu/ssrl/
Investigating Self-regulation and Motivation: Historical Background, Methodological Developments, and Future

Authors: Barry J. Zimmerman,
Journal: AMERICAN EDUCATIONAL RESEARCH JOURNAL, 45(1), 166-183, MAR 2008
Interview conducted by Jennifer L. Minnick, Essential Science Indicators, ScienceWatch.com, Thomson Reuters

The interview is reproduced here with permission from ScienceWatch.com (http://sciencewatch.com/dr/erf/2011/11decerf/11decerfZimm/).

Barry J. Zimmerman talks with ScienceWatch.com (SW) and answers a few questions about this month’s Emerging Research Front paper in the field of Social Sciences, general.

SW: Why do you think your paper is highly cited?
I believe the paper was highly cited because of its timing, scope, and the topic. In terms of timing, it was published after approximately 25 years of highly productive self-regulation (SR) research and compelling applications by a productive group of researchers. Its publication also marked the beginning of a new generation of SR researchers who are taking the field in new directions methodologically.

In terms of its scope, the field of SR addresses the content of diverse learning tasks (e.g., academic, sport, music, etc.) and has been studied by researchers from around the globe. Finally, in terms of the topic, SR researchers feel that it is not only intuitively appealing, but it is also contemporaneous with the advent of technology that renders new forms of self-regulated learning practical.

SW: Does it describe a new discovery, methodology, or synthesis of knowledge?
The paper seeks to discuss all three of these issues to some degree, but particular attention was devoted to new "event" methods to assess self-regulated learning that can be applied during the act of learning, such as thinking aloud, structured diaries, microanalysis, electronic trace logs, and direct observation.

A Cyclic Phase Model of Self-Regulated Learning

SW: Would you summarize the significance of your paper in layman’s terms?
Self-regulated learning refers to how students become masters of their own learning processes. It is not a mental ability or a performance skill but rather is the self-directed process through which abilities are transformed into task-related skills in diverse fields. This article describes research on key self-regulatory processes, such as goal setting, strategy use, and self-recording, that are used by expert learners. It also considers how these skills can be taught and measured.

SW: How did you become involved in this research, and how would you describe the particular challenges, setbacks, and successes you’ve encountered along the way?
From the outset of my career, I have been interested in how learners are able to learn more effectively on their own. I struggled to devise effective ways to measure self-regulation—particularly as it occurs in naturalistic settings, such as during studying in non-classroom environments. Initially, I used a structured interview methodology that assessed students’ use of SR strategies to solve hypothetical problems. This scale measured a common SR factor, which correlated highly with student achievement, and with teachers’ ratings of students' SR in class. Despite such accomplishments, these measures were limited because they were not online indices of specific SR processes as they were being used during learning. I also became aware of the need to explain motivational processes and beliefs that underlie students' initiation and persistence in their learning efforts. This led me to formulate a cyclical phase model of SR, which depicted learning processes and motivational beliefs in three phases: forethought, performance, and self-reflection.

SW: Where do you see your research leading in the future?
One emergent issue deals with the calibration of self-reported SR measures when compared to trace measures of these event processes. There is evidence that overestimates of self-efficacy beliefs are linked to poorer academic outcomes, such as test results. One possibility is that overconfidence may undermine students' motivation to study diligently.

“Self-regulation research was designed to discover the cognitive, motivational, and behavioral sources of personal mastery during learning...”

A second emergent issue involves whether teachers can modify their classrooms to foster increases in SR learning among their children. For example, does asking students to record their performance during learning lead to greater self-awareness and acquisition?

A third emergent issue involves the interrelation of students' motivational feelings and beliefs and metacognitive shifts in learning processes. For example, does setting of process goals lead to strategy attributions regarding outcomes and to more adaptive learning? These are just a few of the possible paths for future research.

An Interview with Barry J. Zimmerman (Continued)

An Interview with the Outgoing SIG Chair: Self-regulation, Technology, and Learning and Teaching with Passion: An Interview with Héfer Bembenutty by Marie C. White, Nyack College, New York

What follows is an interview conducted with Dr. Héfer Bembenutty, the current and outgoing Studying and Self-regulated SIG chair. His doctorate was obtained from The City University of New York, Graduate Center, in educational psychology. Presently, he is an assistant professor of Educational Psychology at Queens College of The City University of New York in the Department of Secondary and Youth Services. He teaches undergraduate and graduate courses in educational psychology, instruction and technology, human development and learning, classroom management, psychology of adolescence, and multicultural education. He has maintained an active research agenda in students’ and teachers’ emotion regulation and self-regulation of learning, the effects of emotion on learning, homework self-regulation, self-efficacy beliefs, multicultural education, and academic delay of gratification.

You have been a significant member of the SIG and an officer since 2006. How do you characterize your experience as an officer?

My experience as an officer has been personally and professionally very rewarding. I had a great time and I do not have any regrets. I have been an elected officer of the SIG Studying and Self-regulated Learning since 2006 beginning as junior and then senior secretary. Next, I served first as a junior and then as a senior program chair. Later on, I became the junior SIG chair for two consecutive years, and currently, I am the SIG senior chair of our SIG. The 2012 AERA annual meeting Vancouver will conclude my years serving as the senior chair of our SIG.

While serving as an officer, I had the opportunity to learn from outstanding previous officers. They mentored me. In particular, working with Dr. Heidi Andrade was very rewarding and expanded my vision of the officer’s roles in our SIG. Not only was she a caring, problem-solving, and a business-oriented leader, in addition she was highly organized, methodological, and attentive to details. I also worked with other important senior officers who helped me tremendously, among them, Linda Bol, Linda Garavalia, Sherri Horner, William Lan, and Rick King.

As the senior chair officer, I have been fortunate to collaborate with conscientious, responsible, committed, and diligent executive officers. Working with Doug Kauffman, Timothy Cleary, Jill Salisbury-Glennon, Peggy Chen, Anthony Artino, Maria DiBenedetto and Marie White has been very rewarding, and we constitute a very strong and positive team. My experience also has been enriched by working with reliable and diligent appointed officers such as Rick King, Teya Rutherford, Erin Peters, Taylor Acee, Erin White, and Daniel Moos.

What are some of the significant events that occurred during your tenure as a SIG officer?

During my tenure and while serving in different roles, I have had many positive experiences negotiating the policies of AERA for the best of SIG members. My most satisfying accomplishments include making and maintaining positive relationship with the AERA administration. In some ways, I believe I have been able to contribute to the successful membership increase in our SIG and our interaction with other SIGs such as Motivation in Education and Division C.

As a team of officers, we created three new committees, The Graduate Students Research Award, The Graduate Students Committee, and the Poster Award Committee. We increased submissions of proposals to the annual AERA program, and increased the participation and leadership of graduate students in our SIG. We also have created an outstanding newsletter, which contains contributions of researchers, graduate students, and teachers and circulates through the APA Division 15’s listserv. Significant progress has been made in regard to our immersion into the cybernetic world with our AERA, Facebook, and Twitter websites.

I am proud that I recruited some of the best and passionate scholars in our discipline to take leadership positions in our SIG. For instance, this year election has a very competitive gamma of outstanding candidates. For example, Doug, our next senior chair, is developing a proposal to create an award that will recognize an outstanding contribution to our discipline in honor of Professor Barry Zimmerman.

How do you envision the future of the SIG SSRL?

Our SIG has a great future. The state of our SIG is solid with strong leaders in our discipline, tremendous programs, and innovative plans. For example, Doug, our next senior chair, is developing a proposal to create an award that will recognize an outstanding contribution to our discipline in honor of Professor Barry Zimmer-

http://uhaweb.hartford.edu/ssrl/
An Interview with the Outgoing SIG Chair: Self-regulation, Technology, and Learning and Teaching with Passion: An Interview with Héfer Bembenutty (continued)

Zimmerman. Under my direction, he will submit a proposal to be discussed at our business meeting in Vancouver. I leave my role as an officer knowing that these incoming SIG officers are not only talented and gifted, but possess vision and passion for learning and leading. They will be the heroes and she-heroes who will make our SIG a major force in our educational system, in the AERA organization, to be respected and admired internationally. I am confident of their courage, selflessness, and more importantly, I am confident of their self-regulatory skills.

Your tenure as the senior chair of our SIG is coming to an end, what will you do next?

Following my tenure of serving our SIG, I will continue to be an active member in any capacity the new officers consider to be helpful. In addition, I look forward to new leadership roles in AERA and APA. I have been elected to serve as the Program Chair of the AERA SIG Social and Emotional Learning, which is a two-year commitment. I also look forward to be involved in the American Psychological Association (APA) Division 15 and European Association for Research on Learning and Instruction (EARLI).

Since the theme of the newsletter is self-regulation and technology, what is your view of the interaction between self-regulation and technology?

Technology has changed everything we do in our discipline. I have welcomed technology to the arenas in which I interact with colleagues. For instance, now, I prefer to Skype a colleague rather than sending an e-mail or making a telephone call. We can edit and provide feedback to manuscripts and professional contribution online. I also use technology in all my classes that I teach to teacher and candidate learners.

I have been fascinated with two pieces related to technology and self-regulation. Anastasia Kitsantas and Nada Dabbagh (2011) and Jeffrey Greene, Daniel Moos, and Roger Azevedo (2011) contributed to a volume I edited for New Direction for Teaching and Learning. In that volume, Anastasia and Nada describe how Web 2.0 technologies can be used to facilitate self-regulated learning with examples about how instructors can integrate software into course design that will promote self-regulation. They demonstrate how communication tools such as Skype could support social interaction and self-regulation. They also assert that experience and resource sharing tools such as weblogs and Wikis could be used to promote learning and self-regulation and how social networking tools such as Facebook and LinkedIn can be used to create learning communities and encourage learning.

Jeffrey, Dan, and Roger highly impressed me with their report about how self-regulated learning skills can facilitate learning with computer-based learning environments. They made a strong argument supporting the notion that instructors can use those tools to diagnose and enhance the self-regulation of learning of their students. They argued that students’ self-efficacy is an important personal belief that influences how student self-regulate their learning using hypermedia. These two pieces have transformed and opened the ways in which I approach my research and my teaching.

Anyone who knows you recognizes your passion for teaching. Can you tell us something about your teaching approaches?

I enjoy teaching. I have been educated by champion teachers. I can honestly say that all my elementary, middle, and high school teachers and college professors were all great teachers. For as long as I can remember, I always wanted to be a teacher. My students are teachers and I do believe in them and their capability to learn and practice teaching. I tried to help them to be self-regulated and self-efficacious learners and teachers. I believe that teachers need to be self-regulated in order to help their students to learn. My classroom is a community where my students can have genuine self-regulated learning experiences and engage in self-reinforcement that they later can bring into their classrooms.

In my classes, I hope that my students reflect about their own learning and professionalism. I hope that I can help them to acquire the knowledge, skills, and disposition necessary to value their professional roles in the teaching career that are conducive to long-term learning. I am humbled when I see their hearts become fired by a passion for learning and a passion for teaching as they continue enhancing their self-efficacy beliefs, their willingness to delay gratification, and their self-regulation of learning and teaching. At the same time, I work hard to increase day-by-day my own passion for teaching and I to strive to be a more caring teacher to all my students.

You describe your instructors as great teachers, what did they do which signifies the impact they had on your teaching and learning? Would you describe them as mentors?

I have been educated by the best educators in the world. I have three mentors. To give you only a few examples, Dr. Stuart Karabenick was my social psychology professor when I was doing my master’s degree in experimental psychology under his mentorship. He is clever, very clear, motivating, and inspiring.

During my doctoral education, Dr. Barry Zimmerman was my professor and mentor. He is analytical, profound, reflective, insightful, and highly knowledgeable. Karabenick and Zimmerman are very caring, inspirational, and promoted self-regulation and instilled self-efficacy in me.

My third mentor is Dr. Wilbert (Bill) McKeachie, the world foremost maestro. I was never his student, but I learned from him since the very second I looked at his eyes many years ago. In spite of being highly knowledgeable almost about everything one can imagine, he teaches with his eyes, his hands, and his smiles. He teaches with his questions and reflections. I do continue learning everyday from these three giant teachers in my life. The three of them continue educating me and keeping me busy with articles, recommending books for me to read, and asking me reflective and analytical questions.

With such great mentors, can you share with us how they continue teaching you?

They are all readers and desire for those around them to be well-read, especially in the field of psychology and education. For example, Dr. McKeachie is subscribed to more than 50 scientific and secular journals. After he reads them, he gives them to me to read. He is subscribed to many of the APA journals and most of the AERA journals as well as many other journals outside of education and psychology. He also gives me secular periodicals to read such as the New Yorker and National Geographic. There is something very interesting in his reading journals. He writes comments on the margins of most of the articles he read. His comments written on the margins include his discussion, arguments, agreements or disagreements with the authors. He even corrects the grammar or syntax of published articles. He also writes notes about how and when he knew the authors. Those journals are an encyclopedia of history through the eyes of Dr. McKeachie.

Dr. Karabenick is another voracious reader. Right now, we
An Interview with the Outgoing SIG Chair: Self-regulation, Technology, and Learning and Teaching with Passion: An Interview with Héfer Bembenutty (continued)

Right now, we are reading the APA Educational Psychology Handbook (2012). Every week, we read one or two chapters; we discussed them in his research group with very gifted doctoral students. He brings to the discussion critical points that I could not even imagine. In addition to the weekly readings, he supplements those already heavy and condensed chapters with two or three supporting and related articles he gets from the current literature or classic articles to help us to understand the full perspective of the topics under the discussion.

Dr. Zimmerman is another insatiable reader. He just loves reading. He always suggests reading materials to me. Since he knows that I am a devoted tennis fan, he recently recommended me to read Bounce by Matthew Syed (2011). He shared with me that the book has much to say about self-regulatory techniques in the sport. I bought a copy of the book. For instance, in the book, Syed reveals (p. 36) an important self-regulatory process in the game of the tennis great Roger Federer. Syed contends that the successes of Federer’s immaculately timed forehand is ingrained in his system and that Federer cannot be able to explain the mechanism of the movement of his hand because he has practiced that movement for a very long time. The author concurs with Zimmerman in that self-regulation is a matter of using appropriate self-regulatory strategies, remain task-focused, and practicing those strategies until they are ingrained in one cognitive system. These are trends that I look forward to emulate.

What would you like to add for our readers?

Thank you for the opportunity to share with members of our SIG and readers of our newsletter my many years of great experiences as a SIG officer. You have asked me very insightful questions. I can see that you have a great future ahead of you in our SIG in different leading roles that will significantly impact our discipline.

It was a pleasure!

Thanks to you, Héfer.

References

The Triumph of Self-regulation through Integrative Learning Technologies

Reviewed by Héfer Bembenutty, Queens College, The City University of New York

Learning to Learn with Integrative Learning Technologies: A Practical Guide for Academic Success, as I read it, was written for the “Generation Y” students born between 1984 and 2002 who seek instant gratification by using technological tools such as iPhones, iPads, Facebook, LinkedIn, Twitter, and instant text messaging, but who may struggle passing their first mathematics test or writing their first essay in college. It is also written as a handy tool for college instructors who may help Generation Y students to be self-regulated learners.

In Learning to Learn with Integrative Learning Technologies, educational psychologist Anastasia Kitsantas and instructional technology educator Nada Dabbagh take us on a voyage towards understanding the fundamentals of what it is to be a self-regulated learner at a time when undergraduate students are bombarded with media, technological challenges, and obstacles which could interfere with their reaching their academic goals and professional dreams. To Kitsantas and Dabbagh, self-regulation of learning refers to self-directed learning intended to acquire knowledge and skills without being dependent on others. Embedded within social cognitive theory, self-regulation of learning involves the use of learning strategies that empower students to transform learning limitations and barriers into self-efficacy and academic success. From this perspective, learners are construed as active agents and masters of their own learning to learn.

To Kitsantas and Dabbagh, self-regulation is the appropriate catalyst for learners to respond effectively to contemporary technological trends; and they propose marrying learning to learn with approaches to integrative learning technology as a formula to facilitate college students’ academic success at the time when many students enter postsecondary education lacking basic learning skills. The authors indicate that integrative learning technologies (ILT) serve as a dynamic collection of Web tools, software applications, and mobile technologies that, when used for instructional purposes, facilitate learning to learn.

The purpose of the book is to provide practical guidelines to enhance the learning experience and the self-regulation of college students. The book vividly describes specific skills and learning strategies that, through the use of ILT, students will enjoy and use to activate and sustain control of their academic actions, beliefs, and behavior in order to attain valuable academic goals. The book is also an important tool for traditional classroom college instructors, online instructors, and instructional developers by assisting them in imparting knowledge and skills to their students and for empowering their students by providing life-long tools that their students could use in their future professional pursuits.

To help readers during the vivid voyage to self-regulation through the use of ILT, Kitsantas and Dabbagh include scenarios in each chapter related to college instruction and self-regulation. Each of the chapters is a picturesque journey supported with self-regulation, motivation, and ILT research. The supportive research assures the readers that the authors know their disciplines so that readers can be confident that the applications of self-regulation through ILT will work.

http://uhaweb.hartford.edu/ssrl/
The Triumph of Self-regulation through Integrative Learning Technologies

(Continued)

The chapters also include ILT tools and features, with an emphasis on Web 2.0, accompanied with tables and figures to assist instructors in helping students on their own journey of learning to learn. Finally, instructional applications with steps about how-to-implement each strategy are presented - almost as if the reader is following the best recipes of Julia Child or emulating the exact tennis strokes of Peter Sampras.

Any amateur learner or inexperienced educator in the areas of self-regulation or ILT will be fired-up by the enthusiasm and surrealism with which Kitsantas and Dabbagh delineate the six specific topics of the book: goal setting, use of effective task strategies, self-monitoring and self-evaluation, time management, help seeking, and motivation and affect. Each topic is well researched and presented in practical and down-to-earth language, and they have inspired the hungry minds of learners who have a serious desire to overcome challenges or educators who want to promote, not only the acquisition of knowledge and skills, but also long-term self-directed learners.

The first topic is goal setting. Goal setting is described as an important self-regulatory strategy that can be supported through the use of ILT. Learners are encouraged to set specific, proximal, challenging, but attainable, measurable, and process-oriented goals. To illustrate how instructors can use ILT features to help students, the authors skillfully illustrate how an instructor could use the four-phase training model of self-regulation (i.e., observation, emulation, self-control, and self-regulation) to guide the students through the learning process.

Second, the use of effective task strategies is emphasized in order to provide guidelines on how to integrate ILT with self-regulation. Use of task strategies is expected to empower learners, motivate them, and assist them to achieve their academic goals. The authors describe how rehearsal, elaboration, organization, and comprehensiveness can be used. For instance, with regard to the task strategy of rehearsal, they suggest that students can use word processors and Web publishing tools to underline, highlight, and cluster learning content.

Third, self-monitoring and self-evaluation can be used by instructors to support learning and reflection of their students. Self-monitoring can be supported and promoted by using ILT administrative tools (e.g., course planning) and assessment tools (e.g., student portfolios and online grade books). ILT can also be used to support and promote self-evaluation to help students check over their work to make sure they did it right, with tools such as online rubrics.

Fourth, Kitsantas and Dabbagh describe the importance of time management. A major advantage of time management is that it empowers students by providing them with control over their own learning processes. The book portrays realistic scenarios in which students could develop a time-management system using ILT to clearly communicate course deadlines, encourage goal setting, provide checklists and feedback, and to scaffold regular check-in processes. For instance, in the case of providing effective feedback, instructors can use asynchronous tools (e.g., e-mail or discussion forum) or synchronous tools (e.g., chat or virtual sessions).

Fifth, help seeking is presented as a self-regulatory learning strategy that instructors could teach to their students with the objective being that students would approach learning to learn with positive dispositions and without fears of embarrassment or threats to self-esteem. Instructors can use ILT to provide emotional, appraisal, instrumental, and informational support. For example, in the case of instrumental support, instructors could encourage students to use online dictionaries, electronic libraries, databases, and provide students with access to online learning materials.

Finally, motivation, affect, and learning communities can be enhanced through the use of ILT by cultivating a positive environment in which learners could engage in exploration, dialogue, and support for each other. For instance, in the case of dialogue, instructors could require students to reflect on their understanding of course material by using weblogs or discussion forums. In the case of motivation, instructors could help their students to assess their self-efficacy beliefs by providing them with an assessment scale using an online survey tool such as SurveyMonkey.

The book concludes with examples of social software that can be used for instruction (e.g., Skype, Weblogs, Wikis, Delicious, Facebook, and mobile technologies). In the case of Skype, it is considered a Web 2.0 technology that serves to turn personal computers into a telephone and where two or more individuals can see and talk to each other online. Instructors could use Skype to encourage students to conduct interviews with textbook authors or experts in the materials discussed in class.

In writing the book, Kitsantas and Dabbagh have been attentive to very important elements of the self-regulation of learning discipline. They also voice how ILT can serve as an essential tool to achieve academic goals for all learners, in particular, to those who struggle during their initial college voyage. They capture with a natural brush what instructors could do to help many of their students during times of tumult, change, and challenge. The book hits readers with the reality of the challenges faced by students in the era of cybernetic technology and instant gratification. However, they look at the coin of technology from a different perspective, one of hope, enthusiasm, confidence, and possibilities in a time of difficulty when pursuing long-term academic goals.

By writing this book with confidence that self-regulation could make significant differences in the learning to learn experiences of college students, this beautiful piece of work provides solutions and opportunities to students for whom the first year of college could be challenging. This wonderful piece also provides hope and confidence to instructors who are willing to help their students discover that self-regulation through ILT is possible at a time when delay of gratification is the antidote to technological instant gratification, and when learning to learn is a new experience for many students. With all certainty, the book assures instructors and students about the triumph of self-regulation through integrative learning technologies.

http://uhaweb.hartford.edu/ssrl/
Self-Regulation of Learning and Technology: A Cyclical Process Reflected in Art
by Mr. John Riveaux, Frederick Douglass Academy V, New York City Department of Education

As an art teacher in an urban, public school, I have been pursuing an understanding of my own self-regulation as a learner and as a teacher, while concurrently trying to impart this same important human agency to my art students. As a teacher, my journey into the process of self-regulation has been fascinating, inspiring, and challenging. During this journey, as I searched for applications of self-regulation, I came across the work of Jeffrey Greene, Daniel Moos, and Roger Azevedo (2011). They proposed that self-regulation of learning with computer-based learning environments is important for teachers and students.

To represent interaction between self-regulation of learning and technology, I created a composition which is loaded with symbols and iconography, acting as similes and metaphors as described below:
- Traffic signs refer to the students’ orientation, rules, regulations, and guidance.
- Arrows indicate direction and speed limits allude to paces and allocation of time.
- Stop signs might indicate a saturation point for a path of study or to stop, and regroup and self-evaluate. As I perceive it, when students hit a wall in the pursuit of knowledge, a detour arises, and then the students must explore alternate ideas, avenues, or media to solve problems.
- Books, and laptops are resources of study and research tools. Books are symbolic of traditional academic rigor. However, technology could render printed books obsolete in a few years. In this illustration, books are nostalgic.
- Graphs, clocks, and stopwatches are the apparatus of performance evaluation and goal setting. The melting clock is in homage to, The Persistence of Memory, painted by the artist Salvador Dali, which alludes to a distortion in perception and reality. This distortion I am referring to is the digital world that the student and all of us must navigate through in the times that we live in, thus the student and the background are depicted as computer chips embedded into the landscape of cyber reality (The Matrix).
- To the upper right of the figure is a device with two gages and a control knob. I use this as a metaphor for self-regulation because it is literally called a regulator and it visually forms a triangle, which refers to the structure and function (the trinity) of Zimmerman’s (2001) self-regulatory processes, the forethought phase, the performance phase, and the self-reflection phase, as if it were like a machine.
- The cake symbolizes rewards the student achieves when they delay gratification to master their goals for better gains. As I learned from Dr. Héfer Bembenutty in his educational psychology classes at Queens College, students’ ability to delay gratification is a necessary component of rigor for academic success. In my cannon of iconography the color yellow is a metaphor, alluding to an awakening of a new dawn, and a promising future for students when we embark on the path self-regulated learning, and enlightenment.

I welcome alternative interpretations, critiques, or perspectives as a critique of my work. In sum, I express my ideas of self-regulation and technology through paints and symbols. Through my composition, I share my thoughts, feelings, reactions, and my deepest beliefs. I enjoyed sharing this composition with the readers of this newsletter. My hope is that my art work will stimulate conversation and that it will positively help us to continue exploring the crossing points between self-regulation and technology for each of us as educators and for us to provide the best education to all of our students.

Mr. John Riveaux

References

Self-Regulation of Learning and Technology: A Spanish Teacher's Reflection
by María J. Aguirre, Forest Hills High School, New York

I was born in Mexico where I had a career in the field of tourism. After migrating to New York, I was able to complete both my undergraduate degree majoring in Spanish and Secondary Education, and a master’s degree in World Languages with a specialization in Spanish from Queen College, The City University of New York. Currently, I, teach Spanish in Forest Hills High School, Queens, New York.

This is my second year teaching, and I have come to realize how useful it was to have my professors instruct us on how to use technology in our own teaching and to learn about academic self-regulation. Self-regulation to me involves pursuing personal, academic, and professional goals while controlling my thoughts and behaviors. While learning about self-regulation, one of the most important components that

http://uhaweb.hartford.edu/ssrl/
Self-Regulation of Learning and Technology: A Spanish Teacher’s Reflection

transformed the way I learn and teach was the concept of self-efficacy, which my educational psychology professor, Dr. Héfer Bembrutty helped me to understand.

As a teacher, I am cognizant of what I learned in my master’s degree program about self-regulated learning. Anyone who is acquainted with my teacher and advisor, Dr. Bembrutty, will not be surprised that this topic was a focus of our learning and development. As a result, I realize that students must feel self-efficacious about their ability to learn and they must set goals for themselves. I also know that strategies used to reach goals are important, whether it be my goals as a teacher, or my students’ goals to learn. One of my goals is to promote self-efficacy in my students. I do this by reassuring them that they are supposed to make mistakes and by telling them that mistakes help us to learn. Piaget taught us that cognitive conflict results in a change in us and when I create a classroom environment where students are not afraid to get an incorrect answer, I can see that they are more motivated and comfortable to try harder.

Empowered with self-regulatory skills and self-efficacy beliefs, I help my students to acquire self-regulatory skills through the use of technology. My students come from many different ethnic and cultural backgrounds, as Queens is a very diversified borough. Fortunately for me, every classroom in my school has at least one computer and a SmartBoard. I believe that using SmartBoards is beneficial for teachers and for students. SmartBoards are very conducive to a constructivist approach and I have observed that students enjoy having the ability to drag images or words on the SmartBoard. They also receive immediate feedback which promotes self-regulated learning because it helps them monitor their performance.

The assistance of technology has been a significant benefit in the classroom with children who have special needs. One of my students with special needs had previously been very anxious about responding to questions that I had posed in the classroom. However, through the use of the SmartBoard, she has begun to raise her hand and volunteers to write the answer on the SmartBoard. She seems to feel more comfortable using this tool rather than writing or answering questions in the more traditional way. It is my goal to help each one of my students to become successful learners who will feel self-efficacious in their ability to learn. The theory of self-regulated learning also suggests that students need to engage in a lot of practice until they are able to perform the tasks on their own. I remind my students that practice is important and I provide them with many opportunities to experience mastery from practice. When they go to the SmartBoard, they are practicing what they have observed me do and are at the same time, modeling for their classmates.

The use of technology is a great tool to teach foreign language vocabulary because I am able to post visual images of the words as I pronounce them in Spanish. This activity provides them with access to dual coding: verbal and visual. Group work with my students requires them to do a presentation using PowerPoint or the SmartBoard in preparation for upcoming tests. This type of activity creates a lively interaction among the class and engages all the students in the test review.

I frequently provide my students with feedback by reinforcing their hard work. I set high expectations for the students and I see that they are motivated to learn. It is very rewarding to be a teacher and to use technology to help students develop self-efficacy beliefs, particularly when they started the year off not believing in their capability to learn a new language. It is my hope that the students will take these positive feelings to other learning environments.

Technology as a Tool for Research on Studying and Self-Regulated Learning

by Teomara Rutherford, University of California, Irvine

When I was approached about writing something for the student’s corner about technology and self-regulated learning I offered to focus on how I use technology in my own work as a doctoral student. Self-regulation of learning (SRL) involved individuals’ ability to remain task-focused, self-directed and able to control their thoughts and behavior. I see myself as a motivation and self-regulated learning researcher, and to date, my work has concentrated on typical classroom environments or in-person enrichment programs. Although there is a need for exploration of SRL concepts within computerized or internet environments such as within software, web pages, and class bulletin boards, we can also use technology to help us research the ideas of SRL in traditional classroom or informal learning environments. As a third year PhD student at University of California, Irvine, my work is just beginning, but I have found that technology has been crucial in my data collection so far—I detail examples below.

Survey-Taking

Although far from cutting edge, the use of online surveys helps prevent data entry errors, saves time, and can add clarity for participants. Commercial survey sites provide discounted “Pro” licenses for researchers and educators and allow unlimited surveys and responses. Specifying mandatory questions and using tools like Skip Logic can make the survey experience better for the participants and can lead to more usable data. Similarly, survey files can be downloaded and exported directly to Excel or data analysis software such as SPSS or STATA allowing for immediate analysis without fear of entry errors.
In my own work, I create survey link webpages that contain all the surveys for use in my experiments and studies on student motivation, goals, and self-perceptions of ability. Trained research assistants choose the appropriate survey from the page for the participants in most of my studies, but I’ve also used these pages with children directly—having these easy to click links prevents frustration and error from entering website URLs directly. In one of my studies in an after-school program, children finish an online working memory training and then immediately click a link to a goal-setting survey where they detail their progress and their goals for their next session. This allows me to collect student perceptions proximal to their task without a lot of administration or transition, and provides a microanalytic measure of student self-reflection and forethought (Zimmerman, 2008). <insert screenshot and/or picture from lab>

Field Data Collection

The affordability and portability of netbooks make them ideal tools for field research to administer computerized assessments. For under $200, you can purchase a powerful research tool. As part of a team at UCI, we conduct research in schools to evaluate the effectiveness of educational programming by looking at student motivation, achievement and cognitive abilities such as executive function. Teams visit schools with kits of 16 netbooks which we set up in the library or a free classroom. Students come in groups for 30-40 minute testing sessions where they complete cognitive tasks designed with e-prime software. Student data are collected directly on the netbooks and brought back to UCI, where we download and compile detailed information on their performance. With this system, we are able to test about three elementary-aged students per researcher, and on many days administer individualized, adaptive tests to 40+ students within a span of 3 hours. Using adaptive tests—those that progress into more difficult problems when students complete earlier, easier problems—we can gather more data per student in an efficient way.

Use of Existing Data

Software developers themselves collect an immense amount of data on the users of their programs. Some of these data may be of interest to educational researchers. Working with the MIND Research Institute in Santa Ana, I am able to access valuable data to answer questions about student judgments of knowing in the domain of mathematics. Students take a series of short quizzes within the year-long math software program, and after each quiz question rate their confidence on that question by choosing from one of two icons. These data provide a longitudinal representation of change in student calibration over the year, and the software provides feedback to students on the accuracy of their judgments—feedback, which may cause students to think more carefully (and possibly more accurately) about their future confidence ratings. Collecting data at this level of detail and for so many time points would be a daunting task for me. Looking to click data or game-play data already collected by software developers can provide almost real-time evidence of student learning or thought processes.

Collaboration

E-mail is ubiquitous of course, but other online tools allow for collaboration and networking as well. As I attend more conferences and meet researchers who share my interests at other institutions I find networking sites like Facebook, LinkedIn, and academia.edu allow me to maintain some sort of connection (even if it is just based on sharing the mundane) with the people I meet. I find it easier to meet up and pick up where we left off with those I keep in touch with this way. I have even had my online colleagues answer a Facebook plea for help with a particularly tricky piece of data analysis or with tracking down a hard-to-find article. My online connections expand my resources from which to seek help—adding to my own personal self-regulation.

Tools like Google docs (online, sharable versions of MS Office-like programs) help with project collaboration. My labs at UCI keep track of student projects and participants using Google forms and spreadsheets and use tools like doodle to schedule meetings without the need for everyone to have the same calendaring program.

Although many of these tools are not unique to the study of self-regulated learning, as researchers of SRL, we face many of the same roadblocks to our research that trouble our colleagues in other fields who work with children or who work with human cognitive or emotional processes. By sharing the ways we can most efficiently and cost-effectively collect data on participants and manage the administrative demands of our work, we can improve the quality of our research. It is my hope that I’ve sparked an idea or offered a technique that in some small way can help the readers of this newsletter, and I’m happy to have the favor returned in person at AERA or on facebook.

http://uhaweb.hartford.edu/ssrl/
New Webmaster

Since 2004, Dr. Rick King has been our webmaster. Prior to that, he was program junior and senior chair, and SIG junior and senior chair. After so many years of such rich service to our SIG, after the meeting in Vancouver, Rick will transfer his webmaster responsibility to Teomara Rutherford. Teya will continue Rick's vanguard while we move our website to the AERA, Facebook, and LinkedIn sites. Thanks, Rick for all those years of outstanding service to our SIG and our discipline.

Research Co-Op

We – Allyson Hadwin, John Nesbit and Phil Winne – have developed software tools for researching studying and self-regulated learning. nStudy runs inside the Firefox browser. Students can use nStudy’s tools solo or in a shared workspace to highlight, tag and annotate online content; build glossaries, map concepts, chat with peers, draft compositions and manage their “information objects” for assignments or when pursuing curiosity-driven learning. As students work, nStudy gathers extensive, fine-grained, time-stamped data about information they work with and how they work with it. These data describe how learning unfolds. A paper describing nStudy is available at http://learningkit.sfu.ca/lucb/celc-2009-nStudy.pdf.

Web Questionnaire is a tool for creating online measures of achievement, attitude and other constructs. It records respondents' data, can score fixed-response items, and report scores to respondents and researchers.

We want to explore forming a “research co-op” – an online agora for: sharing ideas; collaborating in research using nStudy, Web Questionnaire and other tools; and collaborating to improve and extend software tools for research and learning. Studies would be conducted locally but software, instruments, protocols, data and other resources would be shared. We suggest research could become more creative, and samples more representative and larger than individuals can manage alone. The co-op’s data could be mined for relations and findings we never imagined.

A co-op would incur costs for software development, computing infrastructure and staff. These could be funded by grants to the co-op but, at first, co-op members probably must pay a (hopefully small) fee. The greater the membership, the less the fee.

If the idea of such a research co-op interests you, please email Phil Winne, winne@sfu.ca, with your thoughts. If there is enough interest, we will set up an online community for discussion.

New Publications by SIG Member:

Results of the SSRL SIG Election (2012-2013)

Senior SIG Chair: Dr. Douglass Kauffman
Junior SIG Chair: Dr. Timothy Cleary
Senior Program Chair: Dr. Jill Salisbury-Glennon
Junior Program Chair: Dr. Maria DiBenedetto
Senior Secretary/Newsletter: Dr. Maria White
Junior Secretary/Newsletter: Dr. Erika Patall
Senior Treasurer/Membership: Dr. Peggy Chen
Junior Treasurer/Membership: Dr. Adam Moylan

http://uhaweb.hartford.edu/ssrl/
Join Us in Vancouver this April...

Vancouver, here we come!!! Although we all are excited to be going to breathtaking Vancouver in April, we are even more thrilled with the outstanding sessions that will be sponsored by our SIG SSRL. We have two paper sessions, two roundtable sessions, a poster session, and our annual Business Meeting. A diverse array of topics will be covered in these sessions ranging from innovative assessment methods and evidence-based interventions to emergent trends and issues in the field. These presentations will address a wide range of methodological designs including experimental, correlation, and meta-analyses. Our SIG is also co-sponsoring six different sessions with Division C.

We are also honored to have Dr. Mimi Bong serving as the speaker during the Business Meeting on Sunday April 15 at 6:15 pm. Dr. Bong will be discussing how self-regulation can be conceptualized as both a context-specific and domain-general construct. We look forward to hearing this presentation and from our SIG Chairs, Héfer Bembenutty and Doug Kauffman, regarding all current news and events related to our SIG. Please join us!!!

We strongly encourage all SIG members to attend these sessions to support our membership and colleagues.

SATURDAY

ROUND TABLE SESSION: Saturday, April 14 - 10:35am – 12:05pm
Vancouver Convention Center, East Room 2 & 3
Chair: Anthony Artino

Title – Instructional approaches and intervention programs designed to promote optimal academic performance

General Monitoring and Instructional Scaffolds That Support Metacognition in Middle School Students, Rayne A. Sperling, The Pennsylvania State University; Crystal M. Ramsay, The Pennsylvania State University; Aaron S. Richmond, Metropolitan State College of Denver; John L. Nietfeld, North Carolina State University; Philip M Reeves, The Pennsylvania State University; Amanda M. Hood, The Pennsylvania State University

Implementation of Self-Regulatory Instruction based on Guided Inquiry Approach in 11th Grade Chemistry Class, Cansel Kadioglu, Gazi-osmanpasa University, Turkey; Esen Uzuntiryaki, Middle East Technical University

The Importance of Task Understanding for Learning in Young Students, Stephanie Catherine Helm, University of Victoria; Allyson F. Hadwin, University of Victoria

ROUND TABLE SESSION: Saturday, April 14 – 4:05pm – 5:35pm
Vancouver Convention Center, East Ballroom A
Chair: Hefer Bembenutty

Title – Emergent principles, trends, and issues in the field of self-regulation:

The Role of Self-regulation in Doctoral Students’ Status of All But Dissertation (ABD), Martha Joan Kelley, Auburn University; Jill D. Salisbury-Glennon, Auburn University

Learning Competencies Required For Self-regulated Learning With Expository Texts, Melanie Schuette, Ruhr-University of Bochum; Joachim Wirth, Ruhr-University Bochum

A multi-indicator latent growth model to estimate change in learning strategies throughout Higher Education, Liesje Coertjens, University of Antwerp; Vincent Donche, University of Antwerp; Sven De Maeyer, University of Antwerp

SUNDAY

POSTER SESSION: Sunday, April 15, 2:15pm – 3:45pm
Vancouver Convention Center, Floor, East Ballroom B

A Cross Cultural Investigation of Motivational, Cognitive, and Self-Regulation Factors Affecting Student Achievement, Jaehak Jung, University of Texas - Austin; Claire Ellen Weinstein, University of Texas

Students' approaches to learning in relation to their cognitive capacities, Eva Kyndt, Katholieke Universiteit Leuven; Eduardo C. Cascaillar, Katholieke Universiteit Leuven

Agency as a Mediator of Academic Achievement, Jillianne Code, University of Victoria

BUSINESS MEETING: Sunday, April 15 – 6:15pm – 7:45pm
Vancouver Convention Center, East Room 19 & 20
Chairs: Héfer Bembenutty and Doug Kauffman

http://uhaweb.hartford.edu/ssrl/
Join Us in Vancouver this April...(continued)

Dr. Mimi Bong will be a guest speaker at the meeting. She will make a presentation titled, "Context-Specific Regulation of Learning and Motivation." Dr. Bong will argue that, whereas self-regulated learning processes could be viewed as domain-general, they are nonetheless context-specific. In addition, she will make a distinction between domain-specificity and context-specificity and the resulting implications for theory development and assessment of key constructs. Relevant research on self-efficacy, self-concept, achievement goals, task value, and SRL strategy use will be briefly introduced. An example will be presented that shows how even domain-general processes linking personality (e.g., perfectionism) to SRL behaviors (e.g., procrastination) could be mediated by specific contexts (e.g., perceptions of classroom goal structures).

MONDAY

PAPER SESSION: Monday, April 16, 12:25pm – 1:55pm
Vancouver Convention Center, West Room 217&218
Chair: Heidi Andrade
Discussant: Stephen Pape

Title – Examining and assessing self-regulation through a multi-dimensional lens

Interactions Between Multi-Agent Adaptive Hypermedia Environments and Learner Characteristics on Note-Taking and Learning, Gregory Trevors, McGill University; Melissa Duffy, McGill University; Roger Azevedo, McGill University

An Investigation of the Role of Metacognitive Behavior in Self-Regulated-Learning When Learning a Complex Science Topic with a Hypermedia Learning Environment, Banu Binbasaran Tuysuzoglu, UNC-Chapel Hill; Jeffrey A. Greene, University of North Carolina

A Teacher Rating Scale to Examine Student Self-Regulation in Math Contexts, Gregory L Callan, University of Wisconsin - Milwaukee; Timothy J. Cleary, University of Wisconsin - Milwaukee

Student Regulation as Measured by the Strategic Learning Questionnaire, Lindsay McCardle, University of Victoria; Allyson F. Hadwin, University of Victoria; Philip H. Winne, Simon Fraser University

PAPER SESSION: Monday, April 16, 4:05pm – 5:35pm
Vancouver Convention Center, West Room 224
Chair: Jill Salisbury-Glennon
Discussant: Jeffrey Greene

Title – Exploring trends and emergent issues in self-regulation research: A compass for future inquiry

Effective Strategies within Self-Regulated Learning: a Meta-Analysis, Anouk Donker, Rijksuniversiteit Groningen; Danny Kostons, University of Groningen; Margaretha P.C. Van Der Werf, GION, Institute for Educational Research

A Synthesis of Research on the Relation Between Study Skills and Academic Performance, Amy L. Dent, Duke University; Harris M. Cooper, Duke University; Alison C Koenka, Duke University

Improving Children’s Regulation of Idiom Study: Instructions and Individual Differences, Mariette Henrica Van Loon, Maastricht University; Anique De Bruin, Maastricht University; Tamara Van Gog, Erasmus University Rotterdam, Netherlands; Jeroen JG Van Merrienboer, Maastricht University

Academic Performance and Satisfaction with Homework Completion among College Students: Do Self-efficacy, Self-Regulation, Help Seeking, and Course Context Make a Difference?, Héfer Bembenutty, Queens College - CUNY; Marie Catherine White, Nyack College

Save the Date: SIG Dinner in Vancouver

Please plan to join us for the Studying and Self-Regulated Learning SIG Dinner!
Immediately following our SIG Business Meeting, which will take place on Sunday April 15 from 6:15-7:45 in the Vancouver Convention Center, we will all head out to a restaurant to enjoy some networking, collaboration, socialization and a great dinner!

Please add this to your schedule and watch your email for more details which will be coming soon!! Also please spread the word...this is an excellent opportunity for your graduate students and colleagues who are not SIG members to join us as well!!

A Special Thank You!

We wish to express our most sincere appreciation to the following reviewers for their time, effort, and dedication that they provided toward their thoughtful reviews. Without them, this excellent AERA SIG-Studying and Self-Regulated Learning Program would not have been possible.

Héfer Bembenutty, Matthew Bernacki, Mimi Bong, Gregory Callan, Lara-Jeane Costa, Margaret Gredler, Jeffrey Greene, Brittany Lynn Hott, Koen Lombaerts, Adam Moylan, Stephen Pape, Rayne Sperling
More Member Highlights at Vencouver...

Matthew Bernacki is chairing a symposium that includes multiple presentations on SSRL and technology in Vancouver this April. The session is sponsored primarily by Division C Sec 6a and brings together researchers who use quite disparate methods for assessing SRL with an aim to integrate our methods. With respect to SRL and technology-enhanced environments, Roger Azevedo will be presenting his methods for assessing SRL in MetaTutor and Vincent Aleven will be discussing metacognitive models of help-seeking as they relate to SRL. Phil Winne will serve as discussant. The citation for the symposium is below:

SSRRL-SIG Poster Award Status Update

By Taylor Acee, Texas State University—San Marco, Chair of the Poster Award Committee

The SSRRL-SIG Poster Award petition was submitted to the AERA's SIG Executive Committee (SIG EC) for approval. The SIG EC suggested that we revise and resubmit the petition, which we will do. The AERA SIG EC will meet during the 2012 AERA annual meeting to vote on the revised Poster Award petition. Therefore, the Poster Award will not be offered this year but we are on track for it to be approved in 2013.

Graduate Student Research Awards

Submitted by Daniel Moos, Gustavo College, Chair of the Graduate Student Research Committee.

The Studying and Self-Regulated Learning SIG is pleased to announce that three Graduate Student Research Awards will be given at its 2012 AERA business meeting in Vancouver. Each student will receive $250.00.

Amy Dent, a doctoral student at Duke University, will be presented this award based on her work with Dr. Harris Cooper and Alison Koenka. Their study synthesized research that examines how academic performance relates to resource management and cognitive strategy use for elementary and secondary students.

Greg Trevors, a doctoral student at McGill University, will be presented this award based on his work with Dr. Roger Azevedo. This study examined the interactions between multi-agent adaptive hypermedia environments and learner characteristics.

Banu Binbasaran Tuysuzoglu, a doctoral student at University of North Carolina-Chapel Hill, will also be presented this award. His work with Dr. Jeffrey Greene examined the relationship between monitoring and control and the effect of this relationship on learning about science with hypermedia.