Course Description

The main purpose of this course is to develop in the students an understanding of statistical ideas and procedures required for conducting correct statistical analysis and applications of quantitative methods in the practice of educational research. Students will learn through a combination of text reading assignments, data analysis and interpretation of SPSS printouts (Statistical Package for Social Sciences), and application activities. Students will be expected to identify and report on quantitative methods used in published research (e.g., professional journal articles).

Prerequisites: EDRS 590 or equivalent experience.

Course Methodology: This course consists of lectures, large group discussion, in class activities, and individual/group assignments.

Course Requirements: It is expected that each of you will:
(1) Read all assigned materials for the course.
(2) Participate in classroom activities that reflect critical reading of materials.
(3) Complete two in class assignments and HW assignments.
(4) Design and conduct a pilot research study.
(5) Present the pilot research study in class in a poster format.
(6) Attend each class session.
STUDENT OUTCOMES

- Students will be able to design the basic components of a small-scale quantitative research study including descriptive statistics and inferential statistics
- Students will be able to write clearly and coherently about the conceptual framework, questions and methods used in a research study
- Students will be able to deal appropriately with ethical issues in research
- Students will be able to develop research hypotheses that relate to research questions
- Students will be able to demonstrate an understanding of quantitative research design through completion of a project
- Students will be able to identify threats to internal and external validity in simulated studies and their own research design
- Students will be able to interpret SPSS outputs.
- Students will be able to demonstrate an understanding of power effect size analysis
- Students will be able to evaluate and critique data analysis in published quantitative research articles
- Students will be able to develop and reinforce their critical thinking, problem solving, oral and writing skills

Course Evaluation

1. In class/Homework Assignments: Students will be asked to work individually on homework assignments throughout the semester.

2. Midterm Examination (Closed books and notes)

3. Pilot Data Analysis Project: This course requires students to develop and conduct basic data analysis in an educational setting. This work is intended to reflect what you have learned from this course. Other requirements for this course are designed to build up bases for the final pilot data analysis proposal. The data analysis project must be handed in on time and must adhere to the APA Publication Manual Guidelines.

The presentation of the data analysis project will take place the last day of class.

After completing the data analysis, reflect on that experience. What did you learn from it? How do you think course material helped you carry out the project?

4. Final Examination: Semi-comprehensive (closed books and notes) examination

5. Class Participation and Attendance Policy: Because of the importance of lecture and discussion to your total learning experience, I wish to encourage you to both attend and participate in class regularly. Attendance, punctuality, preparation, and active contribution to small and large group efforts are essential. These elements of your behavior will reflect the professional attitude implied in the course goals and will account for 10% of your course grade. With reference to the grading scale described later in this syllabus, you will note that this
percentage is equivalent to a full letter grade. Students who must miss a class must notify the instructor (preferably in advance) and are responsible for completing all assignments and readings for the next class.

RUBRIC FOR PARTICIPATION AND ATTENDANCE

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>Distinguished (9-10 pts.)</th>
<th>Proficient (8 pts.)</th>
<th>Basic (7 pts.)</th>
<th>Unsatisfactory (6 or less pts.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance & Participation</td>
<td>The student attends all classes, is on time, is prepared and follows outlined procedures in case of absence, the student actively participates and supports the members of the learning group and the members of the class.</td>
<td>The student attends all classes, is on time, is prepared and follows outlined procedures in case of absence; the student makes active contributions to the learning group and class.</td>
<td>The student is on time, prepared for class, and participates in group and class discussions. The student attends all classes and if an absence occurs, the procedure outlined in this section of the syllabus is followed.</td>
<td>The student is late for class. Absences are not documented by following the procedures outlined in this section of the syllabus. The student is not prepared for class and does not actively participate in discussions.</td>
</tr>
</tbody>
</table>

Grading Policy

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Participation and Attendance</td>
<td>10 pts.</td>
</tr>
<tr>
<td>Individual Homework Assignments</td>
<td>10 pts.</td>
</tr>
<tr>
<td>Data Analysis Project</td>
<td>30 pts</td>
</tr>
<tr>
<td>Midterm Examination</td>
<td>20 pts.</td>
</tr>
<tr>
<td>FINAL EXAMINATION</td>
<td>30 pts.</td>
</tr>
</tbody>
</table>
Letter grades will be assigned as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>98-100%</td>
</tr>
<tr>
<td>A</td>
<td>93-97.49%</td>
</tr>
<tr>
<td>A-</td>
<td>90-92.49%</td>
</tr>
<tr>
<td>B+</td>
<td>88-89.49%</td>
</tr>
<tr>
<td>B</td>
<td>83-87.49%</td>
</tr>
<tr>
<td>B-</td>
<td>80-82.49%</td>
</tr>
<tr>
<td>C</td>
<td>70-79.49%</td>
</tr>
<tr>
<td>F</td>
<td>below 70%</td>
</tr>
</tbody>
</table>

Honor Code

All evaluations and homework will be taken under the GMU Honor Code. Students are expected to abide by the honor code set forth in the current edition of the Student Handbook. All exams, assignments and papers are honor work. That means that students must not give nor receive any unauthorized assistance. While members of a team may collaborate on written paper assignments, they may not give or receive assistance from other teams. Plagiarism is also a violation of the honor code. The University’s Honor Code guidelines for academic honesty are at: http://mason.gmu.edu/~montecin/plagiarism.htm

Learning Disabilities

Students with any type of documented disability that may interfere with their learning in this class may negotiate a reasonable accommodation with the instructor. If you have not contacted the Office of Disability Services, and you have a disability please make sure to register for services.

GSE Statements of Expectations

The Graduate School of Education (GSE) expects that all students abide by the following:

Students are expected to exhibit professional behavior and dispositions. See gse.gmu.edu for a listing of these dispositions.

Students must follow the guidelines of the University Honor Code. See http://www.gmu.edu/catalog/apolicies/#TOC_H12 for the full honor code.

Students must agree to abide by the university policy for Responsible Use of Computing. See http://mail.gmu.edu and click on Responsible Use of Computing at the bottom of the screen.

Students with disabilities who seek accommodations in a course must be registered with the GMU Disability Resource Center (DRC) and inform the instructor, in writing, at the beginning of the semester. See www.gmu.edu/student/drc or call 703-993-2474 to access the DRC.
Feb. 2 Measures of central tendency., Variation.
Feb. 9 The Normal Distribution.
Feb. 16 Sampling distribution and interval estimation
Feb. 23 Hypothesis testing: One-sample case for the Mean
March 2 Hypothesis testing: Two-sample case for the Mean
March 9 Hypothesis testing for proportions
March 16 Spring Break
March 23 MIDTERM EXAMINATION
March 30 Correlation. Regression
April 6 Chi-square tests for frequencies
April 13 Basic designs for quantitative research in education. Handouts
April 20 Issues of reliability and validity of experimental design Handouts
April 27 Review and practical illustrations of quantitative inquiry in education
May 4 Project presentations
May 11 FINAL EXAMINATION